AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Lymphoma, Large B-Cell, Diffuse

Showing 11 to 20 of 46 articles

Clear Filters

Broadening the horizon: potential applications of CAR-T cells beyond current indications.

Frontiers in immunology
Engineering immune cells to treat hematological malignancies has been a major focus of research since the first resounding successes of CAR-T-cell therapies in B-ALL. Several diseases can now be treated in highly therapy-refractory or relapsed condit...

SurvIAE: Survival prediction with Interpretable Autoencoders from Diffuse Large B-Cells Lymphoma gene expression data.

Computer methods and programs in biomedicine
BACKGROUND: In Diffuse Large B-Cell Lymphoma (DLBCL), several methodologies are emerging to derive novel biomarkers to be incorporated in the risk assessment. We realized a pipeline that relies on autoencoders (AE) and Explainable Artificial Intellig...

Translating prognostic quantification of c-MYC and BCL2 from tissue microarrays to whole slide images in diffuse large B-cell lymphoma using deep learning.

Diagnostic pathology
BACKGROUND: c-MYC and BCL2 positivity are important prognostic factors for diffuse large B-cell lymphoma. However, manual quantification is subject to significant intra- and inter-observer variability. We developed an automated method for quantificat...

Semi-supervised learning towards automated segmentation of PET images with limited annotations: application to lymphoma patients.

Physical and engineering sciences in medicine
Manual segmentation poses a time-consuming challenge for disease quantification, therapy evaluation, treatment planning, and outcome prediction. Convolutional neural networks (CNNs) hold promise in accurately identifying tumor locations and boundarie...

Artificial intelligence-based prognostic model accurately predicts the survival of patients with diffuse large B-cell lymphomas: analysis of a large cohort in China.

BMC cancer
BACKGROUND: Diffuse large B-cell lymphomas (DLBCLs) display high molecular heterogeneity, but the International Prognostic Index (IPI) considers only clinical indicators and has not been updated to include molecular data. Therefore, we developed a wi...

Prediction of immunochemotherapy response for diffuse large B-cell lymphoma using artificial intelligence digital pathology.

The journal of pathology. Clinical research
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous and prevalent subtype of aggressive non-Hodgkin lymphoma that poses diagnostic and prognostic challenges, particularly in predicting drug responsiveness. In this study, we used digital patholog...

Detection of disease-specific signatures in B cell repertoires of lymphomas using machine learning.

PLoS computational biology
The classification of B cell lymphomas-mainly based on light microscopy evaluation by a pathologist-requires many years of training. Since the B cell receptor (BCR) of the lymphoma clonotype and the microenvironmental immune architecture are importan...

Prognosis Prediction of Diffuse Large B-Cell Lymphoma in F-FDG PET Images Based on Multi-Deep-Learning Models.

IEEE journal of biomedical and health informatics
Diffuse large B-cell lymphoma (DLBCL), a cancer of B cells, has been one of the most challenging and complicated diseases because of its considerable variation in clinical behavior, response to therapy, and prognosis. Radiomic features from medical i...

Harnessing Deep Learning for Accurate Pathological Assessment of Brain Tumor Cell Types.

Journal of imaging informatics in medicine
Primary diffuse central nervous system large B-cell lymphoma (CNS-pDLBCL) and high-grade glioma (HGG) often present similarly, clinically and on imaging, making differentiation challenging. This similarity can complicate pathologists' diagnostic effo...

A Vision Transformer-Based Framework for Knowledge Transfer From Multi-Modal to Mono-Modal Lymphoma Subtyping Models.

IEEE journal of biomedical and health informatics
Determining lymphoma subtypes is a crucial step for better patient treatment targeting to potentially increase their survival chances. In this context, the existing gold standard diagnosis method, which relies on gene expression technology, is highly...