AIMC Topic: Magnetic Resonance Imaging

Clear Filters Showing 671 to 680 of 6485 articles

Identifying autism spectrum disorder based on machine learning for multi-site fMRI.

Journal of neuroscience methods
BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive stereotypical behavior and social impairment. Early diagnosis is essential for developing a treatment plan for autism. Although multi-site data ca...

Artificial Intelligence in Pancreatic Imaging: A Systematic Review.

United European gastroenterology journal
The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to...

Research on noise-induced hearing loss based on functional and structural MRI using machine learning methods.

Scientific reports
Noise-induced hearing loss (NIHL) is a common occupational condition. The aim of this study was to develop a classification model for NIHL on the basis of both functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sM...

Age group classification based on optical measurement of brain pulsation using machine learning.

Scientific reports
Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monito...

Deep learning classification of MGMT status of glioblastomas using multiparametric MRI with a novel domain knowledge augmented mask fusion approach.

Scientific reports
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both M...

FDuDoCLNet: Fully dual-domain contrastive learning network for parallel MRI reconstruction.

Magnetic resonance imaging
Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique that is widely used for high-resolution imaging of soft tissues and organs. However, the slow speed of MRI imaging, especially in high-resolution or dynamic scans, makes MRI...

Enhanced brain tumor detection and segmentation using densely connected convolutional networks with stacking ensemble learning.

Computers in biology and medicine
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmenta...

Delta-Radiomics Using Machine Learning Classifiers With Auxiliary Data Sets to Predict Disease Progression During Magnetic Resonance-Guided Radiotherapy in Adrenal Metastases.

JCO clinical cancer informatics
PURPOSE: Adaptive radiotherapy accounts for interfractional anatomic changes. We hypothesize that changes in the gross tumor volumes identified during daily scans could be analyzed using delta-radiomics to predict disease progression events. We evalu...

Application of elastic net for clinical outcome prediction and classification in progressive supranuclear palsy: A multicenter cohort study.

Parkinsonism & related disorders
BACKGROUND: Previous studies have used machine learning to identify clinically relevant atrophic regions in progressive supranuclear palsy (PSP). This study applied Elastic Net (EN) in PSP to uncover key atrophic patterns, offering a novel approach t...

Assessment of glymphatic function and white matter integrity in children with autism using multi-parametric MRI and machine learning.

European radiology
OBJECTIVES: To assess glymphatic function and white matter integrity in children with autism spectrum disorder (ASD) using multi-parametric MRI, combined with machine learning to evaluate ASD detection performance.