AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Supranuclear Palsy, Progressive

Showing 1 to 10 of 19 articles

Clear Filters

Deep learning reveals disease-specific signatures of white matter pathology in tauopathies.

Acta neuropathologica communications
Although pathology of tauopathies is characterized by abnormal tau protein aggregation in both gray and white matter regions of the brain, neuropathological investigations have generally focused on abnormalities in the cerebral cortex because the can...

Diagnosis of Alzheimer Disease and Tauopathies on Whole-Slide Histopathology Images Using a Weakly Supervised Deep Learning Algorithm.

Laboratory investigation; a journal of technical methods and pathology
Neuropathologic assessment during autopsy is the gold standard for diagnosing neurodegenerative disorders. Neurodegenerative conditions, such as Alzheimer disease (AD) neuropathological change, are a continuous process from normal aging rather than c...

Combined blood Neurofilament light chain and third ventricle width to differentiate Progressive Supranuclear Palsy from Parkinson's Disease: A machine learning study.

Parkinsonism & related disorders
INTRODUCTION: Differentiating Progressive Supranuclear Palsy (PSP) from Parkinson's Disease (PD) may be clinically challenging. In this study, we explored the performance of machine learning models based on MR imaging and blood molecular biomarkers i...

Deep Learning-based Approach for Brainstem and Ventricular MR Planimetry: Application in Patients with Progressive Supranuclear Palsy.

Radiology. Artificial intelligence
Purpose To develop a fast and fully automated deep learning (DL)-based method for the MRI planimetric segmentation and measurement of the brainstem and ventricular structures most affected in patients with progressive supranuclear palsy (PSP). Materi...

Differentiating atypical parkinsonian syndromes with hyperbolic few-shot contrastive learning.

NeuroImage
Differences in iron accumulation patterns have been observed in susceptibility-weighted images across different classes of atypical parkinsonian syndromes (APS). Deep learning methods have shown great potential in automatically detecting these differ...

MRI classification of progressive supranuclear palsy, Parkinson disease and controls using deep learning and machine learning algorithms for the identification of regions and tracts of interest as potential biomarkers.

Computers in biology and medicine
BACKGROUND: Quantitative magnetic resonance imaging (MRI) analysis has shown promise in differentiating neurodegenerative Parkinsonian syndromes and has significantly advanced our understanding of diseases like progressive supranuclear palsy (PSP) in...

Application of elastic net for clinical outcome prediction and classification in progressive supranuclear palsy: A multicenter cohort study.

Parkinsonism & related disorders
BACKGROUND: Previous studies have used machine learning to identify clinically relevant atrophic regions in progressive supranuclear palsy (PSP). This study applied Elastic Net (EN) in PSP to uncover key atrophic patterns, offering a novel approach t...

Automated Imaging Differentiation for Parkinsonism.

JAMA neurology
IMPORTANCE: Magnetic resonance imaging (MRI) paired with appropriate disease-specific machine learning holds promise for the clinical differentiation of Parkinson disease (PD), multiple system atrophy (MSA) parkinsonian variant, and progressive supra...