AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Mass Screening

Showing 271 to 280 of 430 articles

Clear Filters

Policy Implications of Artificial Intelligence and Machine Learning in Diabetes Management.

Current diabetes reports
PURPOSE OF REVIEW: Machine learning (ML) is increasingly being studied for the screening, diagnosis, and management of diabetes and its complications. Although various models of ML have been developed, most have not led to practical solutions for rea...

Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study.

The lancet. Gastroenterology & hepatology
BACKGROUND: Colonoscopy with computer-aided detection (CADe) has been shown in non-blinded trials to improve detection of colon polyps and adenomas by providing visual alarms during the procedure. We aimed to assess the effectiveness of a CADe system...

Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: A systematic review and meta-analysis.

Computer methods and programs in biomedicine
BACKGROUND: Diabetic retinopathy (DR) is one of the leading causes of blindness globally. Earlier detection and timely treatment of DR are desirable to reduce the incidence and progression of vision loss. Currently, deep learning (DL) approaches have...

A Machine Learning Approach to Design an Efficient Selective Screening of Mild Cognitive Impairment.

Journal of visualized experiments : JoVE
Mild cognitive impairment (MCI) is the first sign of dementia among elderly populations and its early detection is crucial in our aging societies. Common MCI tests are time-consuming such that indiscriminate massive screening would not be cost-effect...

Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening.

Medicinal research reviews
Discovery and development of biopeptides are time-consuming, laborious, and dependent on various factors. Data-driven computational methods, especially machine learning (ML) approach, can rapidly and efficiently predict the utility of therapeutic pep...

Cost-effectiveness of targeted screening for the identification of patients with atrial fibrillation: evaluation of a machine learning risk prediction algorithm.

Journal of medical economics
As many cases of atrial fibrillation (AF) are asymptomatic, patients often remain undiagnosed until complications (e.g. stroke) manifest. Risk-prediction algorithms may help to efficiently identify people with undiagnosed AF. However, the cost-effec...

Using machine learning models to improve stroke risk level classification methods of China national stroke screening.

BMC medical informatics and decision making
BACKGROUND: With the character of high incidence, high prevalence and high mortality, stroke has brought a heavy burden to families and society in China. In 2009, the Ministry of Health of China launched the China national stroke screening and interv...

[Artificial Intelligence for the Development of Screening Parameters in the Field of Corneal Biomechanics].

Klinische Monatsblatter fur Augenheilkunde
Machine learning and artificial intelligence are mostly important if data analysis by knowledge-based analytical methods is difficult and complex. In such cases, combined analytical and empirical approaches based on AI are also meaningful. The develo...

Building an Otoscopic screening prototype tool using deep learning.

Journal of otolaryngology - head & neck surgery = Le Journal d'oto-rhino-laryngologie et de chirurgie cervico-faciale
BACKGROUND: Otologic diseases are often difficult to diagnose accurately for primary care providers. Deep learning methods have been applied with great success in many areas of medicine, often outperforming well trained human observers. The aim of th...