AIMC Topic: Mass Spectrometry

Clear Filters Showing 41 to 50 of 293 articles

Untargeted Swab Touch Spray-Mass Spectrometry Analysis with Machine Learning for On-Site Breast Surgical Margin Assessment.

Analytical chemistry
Direct sampling mass spectrometry (MS) has rapidly advanced with the development of ambient ionization MS techniques. Swab touch-spray (TS)-MS has shown promise for rapid clinical diagnostics. However, commercially available swabs are notorious for t...

Unraveling Spatial Heterogeneity in Mass Spectrometry Imaging Data with GraphMSI.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Mass spectrometry imaging (MSI) provides valuable insights into metabolic heterogeneity by capturing in situ molecular profiles within organisms. One challenge of MSI heterogeneity analysis is performing an objective segmentation to differentiate the...

LC-MS profiling and cytotoxic activity of Angiopteris helferiana against HepG2 cell line: Molecular insight to investigate anticancer agent.

PloS one
Liver cancer is one of the most prevalent malignant diseases in humans and the second leading cause of cancer-related mortality globally. Angiopteris helferiana was mentioned as a possible anticancer herb according to ethnomedicinal applications. How...

Deep Learning-Enabled Rapid Metabolic Decoding of Small Extracellular Vesicles via Dual-Use Mass Spectroscopy Chip Array.

Analytical chemistry
The increasing focus of small extracellular vesicles (sEVs) in liquid biopsy has created a significant demand for streamlined improvements in sEV isolation methods, efficient collection of high-quality sEV data, and powerful rapid analysis of large d...

Environmental drivers of dissolved organic matter composition across central European aquatic systems: A novel correlation-based machine learning and FT-ICR MS approach.

Water research
Dissolved organic matter (DOM) present in surface aquatic systems is a heterogeneous mixture of organic compounds reflecting its allochthonous and autochthonous organic matter (OM) sources. The composition of DOM is determined by environmental factor...

Uncertainty Quantification and Flagging of Unreliable Predictions in Predicting Mass Spectrometry-Related Properties of Small Molecules Using Machine Learning.

International journal of molecular sciences
Mass spectral identification (in particular, in metabolomics) can be refined by comparing the observed and predicted properties of molecules, such as chromatographic retention. Significant advancements have been made in predicting these values using ...

Identifying Organic Chemicals with Acetylcholinesterase Inhibition in Nationwide Estuarine Waters by Machine Learning-Assisted Mass Spectrometric Screening.

Environmental science & technology
Neurotoxicity is frequently observed in the global aquatic environment, threatening aquatic ecosystems and human health. However, a very limited proportion of neurotoxic effects (∼1%) has been explained by known chemicals of concern. Here, we integra...

LRMAHpan: a novel tool for multi-allelic HLA presentation prediction using Resnet-based and LSTM-based neural networks.

Frontiers in immunology
INTRODUCTION: The identification of peptides eluted from HLA complexes by mass spectrometry (MS) can provide critical data for deep learning models of antigen presentation prediction and promote neoantigen vaccine design. A major challenge remains in...

Promoting LC-QToF based non-targeted fingerprinting and biomarker selection with machine learning for the discrimination of black tea geographical origin.

Food chemistry
Traceability and mislabelling of black tea for their geographical origin is known as a major fraud concern of the sector. Discrimination among various geographical indications (GIs) can be challenging due to the complexity of chemical fingerprints in...

MetaPhenotype: A Transferable Meta-Learning Model for Single-Cell Mass Spectrometry-Based Cell Phenotype Prediction Using Limited Number of Cells.

Analytical chemistry
Single-cell mass spectrometry (SCMS) is an emerging tool for studying cell heterogeneity according to variation of molecular species in single cells. Although it has become increasingly common to employ machine learning models in SCMS data analysis, ...