AIMC Topic:
Middle Aged

Clear Filters Showing 1121 to 1130 of 14051 articles

Deep learning-based classification of dementia using image representation of subcortical signals.

BMC medical informatics and decision making
BACKGROUND: Dementia is a neurological syndrome marked by cognitive decline. Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the common forms of dementia, each with distinct progression patterns. Early and accurate diagnosis of dementi...

Circulating CCN6/WISP3 in type 2 diabetes mellitus patients and its correlation with insulin resistance and inflammation: statistical and machine learning analyses.

BMC medical informatics and decision making
INTRODUCTION: Cellular Communication Network Factor 6 (CCN6) is an adipokine whose production undergoes significant alterations in metabolic disorders. Given the well-established link between obesity-induced adipokine dysfunction and the development ...

Automatic detecting multiple bone metastases in breast cancer using deep learning based on low-resolution bone scan images.

Scientific reports
Whole-body bone scan (WBS) is usually used as the effective diagnostic method for early-stage and comprehensive bone metastases of breast cancer. WBS images with breast cancer bone metastasis have the characteristics of low resolution, small foregrou...

Artificial intelligence for breast cancer screening in mammography (AI-STREAM): preliminary analysis of a prospective multicenter cohort study.

Nature communications
Artificial intelligence (AI) improves the accuracy of mammography screening, but prospective evidence, particularly in a single-read setting, remains limited. This study compares the diagnostic accuracy of breast radiologists with and without AI-base...

Deep learning-driven pulmonary artery and vein segmentation reveals demography-associated vasculature anatomical differences.

Nature communications
Pulmonary artery-vein segmentation is critical for disease diagnosis and surgical planning. Traditional methods rely on Computed Tomography Pulmonary Angiography (CTPA), which requires contrast agents with potential health risks. Non-contrast CT, a s...

Comparison of an AI Chatbot With a Nurse Hotline in Reducing Anxiety and Depression Levels in the General Population: Pilot Randomized Controlled Trial.

JMIR human factors
BACKGROUND: Artificial intelligence (AI) chatbots have been customized to deliver on-demand support for people with mental health problems. However, the effectiveness of AI chatbots in tackling mental health problems among the general public in Hong ...

Utilizing Machine Learning Techniques to Predict Negative Remodeling in Uncomplicated Type B Intramural Hematoma.

Annals of vascular surgery
BACKGROUND: To evaluate the effectiveness of machine learning (ML) techniques in predicting negative remodeling in uncomplicated Stanford type B intramural hematoma (IMHB) during the acute phase.

Joint fusion of EHR and ECG data using attention-based CNN and ViT for predicting adverse clinical endpoints in percutaneous coronary intervention patients.

Computers in biology and medicine
Predicting post-Percutaneous Coronary Intervention (PCI) outcomes is crucial for effective patient management and quality improvement in healthcare. However, achieving accurate predictions requires the integration of multimodal clinical data, includi...

Development of Hybrid radiomic Machine learning models for preoperative prediction of meningioma grade on multiparametric MRI.

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
PURPOSE: To develop and compare machine learning models for distinguishing low and high grade meningiomas on multiparametric MRI.