AIMC Topic: Molecular Docking Simulation

Clear Filters Showing 51 to 60 of 667 articles

In silico discovery of novel compounds for FAK activation using virtual screening, AI-based prediction, and molecular dynamics.

Computational biology and chemistry
Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase that plays a crucial role in cell proliferation, migration, and signal transduction. FAK is overexpressed in metastatic and advanced-stage cancers, where it is considered a key kinase in c...

Pan-cancer analysis of CDC7 in human tumors: Integrative multi-omics insights and discovery of novel marine-based inhibitors through machine learning and computational approaches.

Computers in biology and medicine
Cancer remains a significant global health challenge, with the Cell Division Cycle 7 (CDC7) protein emerging as a potential therapeutic target due to its critical role in tumor proliferation, survival, and resistance. However, a comprehensive analysi...

RNAmigos2: accelerated structure-based RNA virtual screening with deep graph learning.

Nature communications
RNAs are a vast reservoir of untapped drug targets. Structure-based virtual screening (VS) identifies candidate molecules by leveraging binding site information, traditionally using molecular docking simulations. However, docking struggles to scale w...

A Review of In Silico Approaches for Discovering Natural Viral Protein Inhibitors in Aquaculture Disease Control.

Journal of fish diseases
Viral diseases pose a significant threat to the sustainability of global aquaculture, causing economic losses and compromising food security. Traditional control methods often demonstrate limited effectiveness, highlighting the need for alternative a...

Deciphering the Pharmacological Potential of Kouqiangjie Formula for the Treatment of Diabetic Periodontitis Based on Network Pharmacology, Machine Learning, Molecular Dynamics, and Animal Experiments.

Drug design, development and therapy
BACKGROUND: Periodontitis (PD) and type 2 diabetes mellitus (T2DM) represent interlinked global health burdens, commonly causing significant clinical complications when coincident. Therefore, managing both conditions (T2DM with periodontitis, DP) sim...

Artificial Intelligence: A New Tool for Structure-Based G Protein-Coupled Receptor Drug Discovery.

Biomolecules
Understanding protein structures can facilitate the development of therapeutic drugs. Traditionally, protein structures have been determined through experimental approaches such as X-ray crystallography, NMR spectroscopy, and cryo-electron microscopy...

Computational discovery of novel PI3KC2α inhibitors using structure-based pharmacophore modeling, machine learning and molecular dynamic simulation.

Journal of molecular graphics & modelling
PI3KC2α is a lipid kinase associated with cancer metastasis and thrombosis. In this study, we present a novel computational workflow integrating structure-based pharmacophore modeling, machine learning (ML), and molecular dynamics (MD) simulations to...

Multitarget Natural Compounds for Ischemic Stroke Treatment: Integration of Deep Learning Prediction and Experimental Validation.

Journal of chemical information and modeling
Ischemic stroke's complex pathophysiology demands therapeutic approaches targeting multiple pathways simultaneously, yet current treatments remain limited. We developed an innovative drug discovery pipeline combining a deep learning approach with exp...

A network toxicology and machine learning approach to investigate the mechanism of kidney injury from melamine and cyanuric acid co-exposure.

Ecotoxicology and environmental safety
BACKGROUND: Within the past two decades, high-profile cases of melamine (MA) exposure have raised significant toxicological concerns, particularly regarding food adulteration. While widely used as a fundamental organic chemical intermediate in variou...