Biological outcomes are governed by multiple genetic and environmental factors that act in concert. Determining multifactor interactions is the primary topic of interest in recent genetics studies but presents enormous statistical and mathematical ch...
Alcoholism, clinical and experimental research
29689131
BACKGROUND: A statistical pipeline was developed and used for determining candidate genes and candidate gene coexpression networks involved in 2 alcohol (i.e., ethanol [EtOH]) metabolism phenotypes, namely alcohol clearance and acetate area under the...
The genetic analysis of complex traits does not escape the current excitement around artificial intelligence, including a renewed interest in "deep learning" (DL) techniques such as Multilayer Perceptrons (MLPs) and Convolutional Neural Networks (CNN...
Genetic risk variants for schizophrenia have been linked to many related clinical and biological phenotypes with the hopes of delineating how individual variation across thousands of variants corresponds to the clinical and etiologic heterogeneity wi...
Deep learning (DL) has emerged as a powerful tool to make accurate predictions from complex data such as image, text, or video. However, its ability to predict phenotypic values from molecular data is less well studied. Here, we describe the theoreti...