AIMC Topic: Nerve Fibers

Clear Filters Showing 41 to 50 of 74 articles

A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs.

American journal of ophthalmology
PURPOSE: To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT)...

A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study.

IEEE transactions on neural networks and learning systems
Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simu...

Multimodal Artificial Intelligence Models Predicting Glaucoma Progression Using Electronic Health Records and Retinal Nerve Fiber Layer Scans.

Translational vision science & technology
PURPOSE: The purpose of this study was to develop models that predict which patients with glaucoma will progress to require surgery, combining structured data from electronic health records (EHRs) and retinal fiber layer optical coherence tomography ...

New Method of Early RRMS Diagnosis Using OCT-Assessed Structural Retinal Data and Explainable Artificial Intelligence.

Translational vision science & technology
PURPOSE: The purpose of this study was to provide the development of a method to classify optical coherence tomography (OCT)-assessed retinal data in the context of automatic diagnosis of early-stage multiple sclerosis (MS) with decision explanation.

RetOCTNet: Deep Learning-Based Segmentation of OCT Images Following Retinal Ganglion Cell Injury.

Translational vision science & technology
PURPOSE: We present RetOCTNet, a deep learning tool to segment the retinal nerve fiber layer (RNFL) and total retinal thickness automatically from optical coherence tomography (OCT) scans in rats following retinal ganglion cell (RGC) injury.

[Application of neural networks for improving the methods of assessment of corneal nerve fibers (preliminary report)].

Vestnik oftalmologii
UNLABELLED: Processing large datasets using artificial intelligence is a promising approach in disease diagnosis and monitoring that focuses on improving research algorithms for existing technologies. Interest in studying corneal nerve fibers (CNFs) ...

CNN-Based Device-Agnostic Feature Extraction From ONH OCT Scans.

Translational vision science & technology
PURPOSE: Optical coherence tomography (OCT)-derived measurements of the optic nerve head (ONH) from different devices are not interchangeable. This poses challenges to patient follow-up and collaborative studies. Here, we present a device-agnostic me...