AIMC Topic: Nucleotide Motifs

Clear Filters Showing 41 to 50 of 52 articles

DeepMotifSyn: a deep learning approach to synthesize heterodimeric DNA motifs.

Briefings in bioinformatics
The cooperativity of transcription factors (TFs) is a widespread phenomenon in the gene regulation system. However, the interaction patterns between TF binding motifs remain elusive. The recent high-throughput assays, CAP-SELEX, have identified over ...

DISMIR: Deep learning-based noninvasive cancer detection by integrating DNA sequence and methylation information of individual cell-free DNA reads.

Briefings in bioinformatics
Detecting cancer signals in cell-free DNA (cfDNA) high-throughput sequencing data is emerging as a novel noninvasive cancer detection method. Due to the high cost of sequencing, it is crucial to make robust and precise predictions with low-depth cfDN...

Identifying complex motifs in massive omics data with a variable-convolutional layer in deep neural network.

Briefings in bioinformatics
Motif identification is among the most common and essential computational tasks for bioinformatics and genomics. Here we proposed a novel convolutional layer for deep neural network, named variable convolutional (vConv) layer, for effective motif ide...

Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning.

Nucleic acids research
N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic mRNAs and influences many aspects of RNA processing. miCLIP (m6A individual-nucleotide resolution UV crosslinking and immunoprecipitation) is an antibody-based appr...

A sequence-based deep learning approach to predict CTCF-mediated chromatin loop.

Briefings in bioinformatics
Three-dimensional (3D) architecture of the chromosomes is of crucial importance for transcription regulation and DNA replication. Various high-throughput chromosome conformation capture-based methods have revealed that CTCF-mediated chromatin loops a...

A self-attention model for inferring cooperativity between regulatory features.

Nucleic acids research
Deep learning has demonstrated its predictive power in modeling complex biological phenomena such as gene expression. The value of these models hinges not only on their accuracy, but also on the ability to extract biologically relevant information fr...

A survey on deep learning in DNA/RNA motif mining.

Briefings in bioinformatics
DNA/RNA motif mining is the foundation of gene function research. The DNA/RNA motif mining plays an extremely important role in identifying the DNA- or RNA-protein binding site, which helps to understand the mechanism of gene regulation and managemen...

A machine learning-based framework for modeling transcription elongation.

Proceedings of the National Academy of Sciences of the United States of America
RNA polymerase II (Pol II) generally pauses at certain positions along gene bodies, thereby interrupting the transcription elongation process, which is often coupled with various important biological functions, such as precursor mRNA splicing and gen...

DeepCLIP: predicting the effect of mutations on protein-RNA binding with deep learning.

Nucleic acids research
Nucleotide variants can cause functional changes by altering protein-RNA binding in various ways that are not easy to predict. This can affect processes such as splicing, nuclear shuttling, and stability of the transcript. Therefore, correct modeling...

Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework.

Nucleic acids research
The identification of transcription factor binding sites and cis-regulatory motifs is a frontier whereupon the rules governing protein-DNA binding are being revealed. Here, we developed a new method (DEep Sequence and Shape mOtif or DESSO) for cis-re...