AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Ovarian Neoplasms

Showing 11 to 20 of 211 articles

Clear Filters

AI-driven patient support: Evaluating the effectiveness of ChatGPT-4 in addressing queries about ovarian cancer compared with healthcare professionals in gynecologic oncology.

Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
PURPOSE: Artificial intelligence (AI) chatbots, such as ChatGPT-4, allow a user to ask questions on an interactive level. This study evaluated the correctness and completeness of responses to questions about ovarian cancer from a GPT-4 chatbot, LilyB...

Accuracy of Large Language Model-based Automatic Calculation of Ovarian-Adnexal Reporting and Data System MRI Scores from Pelvic MRI Reports.

Radiology
Background Ovarian-Adnexal Reporting and Data System (O-RADS) for MRI helps assign malignancy risk, but radiologist adoption is inconsistent. Automatic assignment of O-RADS scores from reports could increase adoption and accuracy. Purpose To evaluate...

Big data analysis and machine learning of the role of cuproptosis-related long non-coding RNAs (CuLncs) in the prognosis and immune landscape of ovarian cancer.

Frontiers in immunology
BACKGROUND: Ovarian cancer (OC) is a severe malignant tumor with a significant threat to women's health, characterized by a high mortality rate and poor prognosis despite conventional treatments such as cytoreductive surgery and platinum-based chemot...

Evaluating feature extraction in ovarian cancer cell line co-cultures using deep neural networks.

Communications biology
Single-cell image analysis is crucial for studying drug effects on cellular morphology and phenotypic changes. Most studies focus on single cell types, overlooking the complexity of cellular interactions. Here, we establish an analysis pipeline to ex...

Enhancing Personalized Chemotherapy for Ovarian Cancer: Integrating Gene Expression Data with Machine Learning.

Asian Pacific journal of cancer prevention : APJCP
OBJECTIVE:  Ovarian cancer's complexity and heterogeneity pose significant challenges in treatment, often resulting in suboptimal chemotherapy outcomes. This study aimed to leverage machine learning algorithms, gene selection, and gene expression dat...

AI-Derived Blood Biomarkers for Ovarian Cancer Diagnosis: Systematic Review and Meta-Analysis.

Journal of medical Internet research
BACKGROUND: Emerging evidence underscores the potential application of artificial intelligence (AI) in discovering noninvasive blood biomarkers. However, the diagnostic value of AI-derived blood biomarkers for ovarian cancer (OC) remains inconsistent...

Deep learning-based analysis of gross features for ovarian epithelial tumors classification: A tool to assist pathologists for frozen section sampling.

Human pathology
Computational pathology has primarily focused on analyzing tissue slides, neglecting the valuable information contained in gross images. To bridge this gap, we proposed a novel approach leveraging the Swin Transformer architecture to develop a Swin-T...

Machine learning-derived diagnostic model of epithelial ovarian cancer based on gut microbiome signatures.

Journal of translational medicine
BACKGROUND: Prior studies have elucidated that alterations in gut microbiota are associated with a spectrum of tumors and metabolic disorders. However, the diagnostic value of gut microbiota in epithelial ovarian cancer remains insufficiently investi...

Development of model for identifying homologous recombination deficiency (HRD) status of ovarian cancer with deep learning on whole slide images.

Journal of translational medicine
BACKGROUND: Homologous recombination deficiency (HRD) refers to the dysfunction of homologous recombination repair (HRR) at the cellular level. The assessment of HRD status has the important significance for the formulation of treatment plans, effica...

Mitigation of outcome conflation in predicting patient outcomes using electronic health records.

Journal of the American Medical Informatics Association : JAMIA
OBJECTIVES: Artificial intelligence (AI) models utilizing electronic health record data for disease prediction can enhance risk stratification but may lack specificity, which is crucial for reducing the economic and psychological burdens associated w...