AIMC Topic: Papillomavirus Infections

Clear Filters Showing 21 to 30 of 57 articles

Clinical evaluation of an artificial intelligence-assisted cytological system among screening strategies for a cervical cancer high-risk population.

BMC cancer
BACKGROUND: Primary cervical cancer screening and treating precancerous lesions are effective ways to prevent cervical cancer. However, the coverage rates of human papillomavirus (HPV) vaccines and routine screening are low in most developing countri...

Explainable prediction model for the human papillomavirus status in patients with oropharyngeal squamous cell carcinoma using CNN on CT images.

Scientific reports
Several studies have emphasised how positive and negative human papillomavirus (HPV+  and HPV-, respectively) oropharyngeal squamous cell carcinoma (OPSCC) has distinct molecular profiles, tumor characteristics, and disease outcomes. Different radiom...

Machine learning models for abstract screening task - A systematic literature review application for health economics and outcome research.

BMC medical research methodology
OBJECTIVE: Systematic literature reviews (SLRs) are critical for life-science research. However, the manual selection and retrieval of relevant publications can be a time-consuming process. This study aims to (1) develop two disease-specific annotate...

Fully automated 3D machine learning model for HPV status characterization in oropharyngeal squamous cell carcinomas based on CT images.

American journal of otolaryngology
BACKGROUND: Human papillomavirus (HPV) status plays a major role in predicting oropharyngeal squamous cell carcinoma (OPSCC) survival. This study assesses the accuracy of a fully automated 3D convolutional neural network (CNN) in predicting HPV statu...

Prognostic significance of cyclin D1 expression pattern in HPV-negative oral and oropharyngeal carcinoma: A deep-learning approach.

Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology
BACKGROUND: We aimed to establish image recognition and survival prediction models using a novel scoring system of cyclin D1 expression pattern in patients with human papillomavirus-negative oral or oropharyngeal squamous cell carcinoma.

A Novel Deep Learning Algorithm for Human Papillomavirus Infection Prediction in Head and Neck Cancers Using Routine Histology Images.

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
The etiology of head and neck squamous cell carcinoma (HNSCC) involves multiple carcinogens, such as alcohol, tobacco, and infection with human papillomavirus (HPV). Because HPV infection influences the prognosis, treatment, and survival of patients ...

Screening for extranodal extension in HPV-associated oropharyngeal carcinoma: evaluation of a CT-based deep learning algorithm in patient data from a multicentre, randomised de-escalation trial.

The Lancet. Digital health
BACKGROUND: Pretreatment identification of pathological extranodal extension (ENE) would guide therapy de-escalation strategies for in human papillomavirus (HPV)-associated oropharyngeal carcinoma but is diagnostically challenging. ECOG-ACRIN Cancer ...

DeepClassPathway: Molecular pathway aware classification using explainable deep learning.

European journal of cancer (Oxford, England : 1990)
OBJECTIVE: HPV-associated head and neck cancer is correlated with favorable prognosis; however, its underlying biology is not fully understood. We propose an explainable convolutional neural network (CNN) classifier, DeepClassPathway, that predicts H...