AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Phantoms, Imaging

Showing 11 to 20 of 748 articles

Clear Filters

Robotic Assistance for Precise Spinal Injections: Development and Clinical Verification.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Robot-assisted surgical systems have shown promising results and better patient outcomes in pedicle screw instrumentation and percutaneous needle interventions. Many commercial robotic assistance systems are available for the aforementioned procedure...

Harnessing the oloid shape in magnetically driven robots to enable high-resolution ultrasound imaging.

Science robotics
Magnetic fields enable remote manipulation of objects and are ideal for medical applications because they pass through human tissue harmlessly. This capability is promising for surgical robots, allowing navigation deeper into the human anatomy and ac...

Transcranial adaptive aberration correction using deep learning for phased-array ultrasound therapy.

Ultrasonics
This study aims to explore the feasibility of a deep learning approach to correct the distortion caused by the skull, thereby developing a transcranial adaptive focusing method for safe ultrasonic treatment in opening of the blood-brain barrier (BBB)...

Accelerated EPR imaging using deep learning denoising.

Magnetic resonance in medicine
PURPOSE: Trityl OXO71-based pulse electron paramagnetic resonance imaging (EPRI) is an excellent technique to obtain partial pressure of oxygen (pO) maps in tissues. In this study, we used deep learning techniques to denoise 3D EPR amplitude and pO m...

Robust vs. Non-robust radiomic features: the quest for optimal machine learning models using phantom and clinical studies.

Cancer imaging : the official publication of the International Cancer Imaging Society
PURPOSE: This study aimed to select robust features against lung motion in a phantom study and use them as input to feature selection algorithms and machine learning classifiers in a clinical study to predict the lymphovascular invasion (LVI) of non-...

Introduction of a hybrid approach based on statistical shape model and Adaptive Neural Fuzzy Inference System (ANFIS) to assess dosimetry uncertainty: A Monte Carlo study.

Computers in biology and medicine
The increasing use of ionizing radiation has raised concerns about adverse and long-term health risks for individuals. Therefore, to evaluate the range of risks and protection against ionizing radiation, it is necessary to assess the dosimetry calcul...

Initial characterization of a novel dual-robot orthovoltage radiotherapy system.

Biomedical physics & engineering express
Adequate access to radiotherapy is a critical global concern affecting low-resource settings such as low- and middle-income countries and rural regions. We propose to reduce this disparity by developing a novel low-cost radiotherapy device that treat...

Portal dose image prediction using Monte Carlo generated transmission energy fluence maps of dynamic radiotherapy treatment plans: a deep learning approach.

Biomedical physics & engineering express
This work aims to develop and investigate the feasibility of a hybrid model combining Monte Carlo (MC) simulations and deep learning (DL) to predict electronic portal imaging device (EPID) images based on MC-generated exit phase space energy fluence ...

Deep Learning-Accelerated Non-Contrast Abbreviated Liver MRI for Detecting Malignant Focal Hepatic Lesions: Dual-Center Validation.

Korean journal of radiology
OBJECTIVE: To compare a deep learning (DL)-accelerated non-enhanced abbreviated MRI (AMRI) protocol with standard AMRI (AMRI) of the liver in terms of image quality and malignant focal lesion detection.

BentRay-NeRF: Bent-Ray Neural Radiance Fields for Robust Speed-of-Sound Imaging in Ultrasound Computed Tomography.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Ultrasound computed tomography (USCT) is a promising technique for breast cancer detection because of its quantitative imaging capability of the speed of sound (SOS) of soft tissues and the fact that malignant breast lesions often have a higher SOS c...