Intelligent systems in interventional healthcare depend on the reliable perception of the environment. In this context, photoacoustic tomography (PAT) has emerged as a non-invasive, functional imaging modality with great clinical potential. Current r...
This paper presents a novel method based on leveraging physics-informed neural networks for magnetic resonance electrical property tomography (MREPT). MREPT is a noninvasive technique that can retrieve the spatial distribution of electrical propertie...
Journal of applied clinical medical physics
Aug 26, 2024
PURPOSE: To develop a non-coplanar cone-beam computed tomography (CBCT) image reconstruction method using projections within a limited angle range for non-coplanar radiotherapy.
OBJECTIVE: A deep neural network (DNN) was trained to generate a multiparametric ultrasound (mpUS) volume from four input ultrasound-based modalities (acoustic radiation force impulse [ARFI] imaging, shear wave elasticity imaging [SWEI], quantitative...
We aim to provide an overview of technical and clinical unmet needs in deep learning (DL) applications for quantitative and qualitative PET in PET/MR, with a focus on attenuation correction, image enhancement, motion correction, kinetic modeling, and...
This work proposes, for the first time, an image-based end-to-end self-normalization framework for positron emission tomography (PET) using conditional generative adversarial networks (cGANs).We evaluated different approaches by exploring each of the...
INTRODUCTION: Quantification of dynamic contrast-enhanced (DCE)-MRI has the potential to provide valuable clinical information, but robust pharmacokinetic modeling remains a challenge for clinical adoption.
Chemical exchange saturation transfer (CEST) MRI at 3 T suffers from low specificity due to overlapping CEST effects from multiple metabolites, while higher field strengths (B) allow for better separation of Z-spectral "peaks," aiding signal interpre...
Deep learning, particularly convolutional neural networks (CNNs), has advanced positron emission tomography (PET) image reconstruction. However, it requires extensive, high-quality training datasets. Unsupervised learning methods, such as deep image ...
PURPOSE: To develop a neural network architecture for improved calibrationless reconstruction of radial data when no ground truth is available for training.