BACKGROUND AND OBJECTIVE: The measurement of carotid intima media thickness (CIMT) in ultrasound images can be used to detect the presence of atherosclerotic plaques. Usually, the CIMT estimation strategy is semi-automatic, since it requires: (1) a m...
OBJECTIVE: To classify motion-induced blurred images of calcified coronary plaques so as to correct coronary calcium scores on nontriggered chest CT, using a deep convolutional neural network (CNN) trained by images of motion artifacts.
Cardiovascular engineering and technology
Sep 18, 2019
PURPOSE: Vulnerable plaque detection is important to acute coronary syndrome (ACS) diagnosis. In recent years, intravascular optical coherence tomography (IVOCT) imaging has been used for vulnerable plaque detection. Current automated detection metho...
This study investigated the impact of coronary CT angiography (cCTA)-derived plaque markers and machine-learning-based CT-derived fractional flow reserve (CT-FFR) to identify adverse cardiac outcome. Data of 82 patients (60 ± 11 years, 62% men) who u...
Background Visual and histogram-based assessments of coronary CT angiography have limited accuracy in the identification of advanced lesions. Radiomics-based machine learning (ML) could provide a more accurate tool. Purpose To compare the diagnostic ...
BACKGROUND AND AIMS: Although grayscale intravascular ultrasound (IVUS) is commonly used for assessing coronary lesion morphology and optimizing stent implantation, detection of vulnerable plaques by IVUS remains challenging. We aimed to develop mach...
Journal of cardiovascular computed tomography
Apr 21, 2019
In the last decade, technical advances in the field of medical imaging significantly improved and broadened the application of coronary CT angiography (CCTA) for the non-invasive assessment of coronary artery disease. Recently, similar breakthroughs ...
PURPOSE: This study sought to determine the feasibility of using Simultaneous Non-contrast Angiography and intraPlaque Hemorrhage (SNAP) to detect the lipid-rich/necrotic core (LRNC), and develop a machine learning based algorithm to segment plaque c...
OBJECTIVES: The present study aimed to compare the diagnostic performance of a machine learning (ML)-based FFR algorithm, quantified subtended myocardial volume, and high-risk plaque features for predicting if a coronary stenosis is hemodynamically s...