BACKGROUND: Postoperative pneumonia, a prevalent form of hospital-acquired pneumonia, poses significant risks to patients' prognosis and even their lives. This study aimed to develop and validate a predictive model for postoperative pneumonia in surg...
INTRODUCTION: Pancreaticoduodenectomy (PD) for patients with pancreatic ductal adenocarcinoma (PDAC) is associated with a high risk of postoperative complications (PoCs) and risk prediction of these is therefore critical for optimal treatment plannin...
Journal of cardiothoracic and vascular anesthesia
39732570
OBJECTIVES: To investigate the impact of systemic inflammatory response syndrome (SIRS) on 30-day mortality following cardiac surgery and develop a machine learning model to predict SIRS.
Journal of vascular surgery. Venous and lymphatic disorders
39732288
OBJECTIVE: Varicose vein ablation is generally indicated in patients with active/healed venous ulcers. However, patient selection for intervention in individuals without venous ulcers is less clear. Tools that predict lack of clinical improvement (LC...
INTRODUCTION: Understanding 1-year mortality following major surgery offers valuable insights into patient outcomes and the quality of peri-operative care. Few models exist that predict 1-year mortality accurately. This study aimed to develop a predi...
OBJECTIVE: This study aimed to develop a predictive model using a random forest algorithm to determine the likelihood of postoperative adhesive small bowel obstruction (ASBO) in infants under 3 months with intestinal malrotation.
BACKGROUND: To summarize the statistical performance of machine learning in predicting revision, secondary knee injury, or reoperations following anterior cruciate ligament reconstruction (ACLR), and to provide a general overview of the statistical p...
BACKGROUND: Arrhythmia is a frequent complication following transcatheter device closure of perimembranous ventricular septal defects (pmVSD). However, there is currently a lack of a convenient tool for predicting postoperative arrhythmia.
International journal of surgery (London, England)
39728602
BACKGROUND: Major adverse cardiovascular events (MACEs) within 30 days following noncardiac surgery are prognostically relevant. Accurate prediction of risk and modifiable risk factors for postoperative MACEs is critical for surgical planning and pat...
Journal of the American Medical Informatics Association : JAMIA
39731515
OBJECTIVE: Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the...