AI Medical Compendium Topic:
Prospective Studies

Clear Filters Showing 421 to 430 of 2218 articles

Deep learning-accelerated T2WI: image quality, efficiency, and staging performance against BLADE T2WI for gastric cancer.

Abdominal radiology (New York)
PURPOSE: The purpose of our study is to investigate image quality, efficiency, and diagnostic performance of a deep learning-accelerated single-shot breath-hold (DLSB) against BLADE for T-weighted MR imaging (TWI) for gastric cancer (GC).

Prospective prediction of anxiety onset in the Canadian longitudinal study on aging (CLSA): A machine learning study.

Journal of affective disorders
BACKGROUND: Anxiety disorders are among the most common mental health disorders in the middle aged and older population. Because older individuals are more likely to have multiple comorbidities or increased frailty, the impact of anxiety disorders on...

Bladder MRI with deep learning-based reconstruction: a prospective evaluation of muscle invasiveness using VI-RADS.

Abdominal radiology (New York)
PURPOSE: To investigate the influence of deep learning reconstruction (DLR) on bladder MRI, specifically examination time, image quality, and diagnostic performance of vesical imaging reporting and data system (VI-RADS) within a prospective clinical ...

Longitudinal assessment of interstitial lung abnormalities on CT in patients with COPD using artificial intelligence-based segmentation: a prospective observational study.

BMC pulmonary medicine
BACKGROUND: Interstitial lung abnormalities (ILAs) on CT may affect the clinical outcomes in patients with chronic obstructive pulmonary disease (COPD), but their quantification remains unestablished. This study examined whether artificial intelligen...

Rapid 2D Na MRI of the calf using a denoising convolutional neural network.

Magnetic resonance imaging
PURPOSE: Na MRI can be used to quantify in-vivo tissue sodium concentration (TSC), but the inherently low Na signal leads to long scan times and/or noisy or low-resolution images. Reconstruction algorithms such as compressed sensing (CS) have been pr...

Utilising intraoperative respiratory dynamic features for developing and validating an explainable machine learning model for postoperative pulmonary complications.

British journal of anaesthesia
BACKGROUND: Timely detection of modifiable risk factors for postoperative pulmonary complications (PPCs) could inform ventilation strategies that attenuate lung injury. We sought to develop, validate, and internally test machine learning models that ...