AIMC Topic: Prostatectomy

Clear Filters Showing 11 to 20 of 874 articles

Stress testing deep learning models for prostate cancer detection on biopsies and surgical specimens.

The Journal of pathology
The presence, location, and extent of prostate cancer is assessed by pathologists using H&E-stained tissue slides. Machine learning approaches can accomplish these tasks for both biopsies and radical prostatectomies. Deep learning approaches using co...

Time-dependent personalized prognostic analysis by machine learning in biochemical recurrence after radical prostatectomy: a retrospective cohort study.

BMC cancer
BACKGROUND: For biochemical recurrence following radical prostatectomy for prostate cancer, treatments such as radiation therapy and androgen deprivation therapy are administered. To diagnose postoperative recurrence as early as possible and to inter...

Artificial intelligence in robot-assisted radical prostatectomy: where do we stand today?

Journal of robotic surgery
BACKGROUND: The development of Artificial Intelligence (AI) is one of the most revolutionary changes in modern history. The combination of AI and Robotic surgery can be used positively for better patient outcomes.

Deep learning prediction of error and skill in robotic prostatectomy suturing.

Surgical endoscopy
BACKGROUND: Manual objective assessment of skill and errors in minimally invasive surgery have been validated with correlation to surgical expertise and patient outcomes. However, assessment and error annotation can be subjective and are time-consumi...

Comparison of Pathologist and Artificial Intelligence-based Grading for Prediction of Metastatic Outcomes After Radical Prostatectomy.

European urology oncology
Gleason grade group (GG) is the most powerful prognostic variable in localized prostate cancer; however, interobserver variability remains a challenge. Artificial intelligence algorithms applied to histopathologic images standardize grading, but most...

Prostate cancer treatment recommendation study based on machine learning and SHAP interpreter.

Cancer science
This study utilized data from 140,294 prostate cancer cases from the Surveillance, Epidemiology, and End Results (SEER) database. Here, 10 different machine learning algorithms were applied to develop treatment options for predicting patients with pr...

A novel assessment of whole-mount Gleason grading in prostate cancer to identify candidates for radical prostatectomy: a machine learning-based multiomics study.

Theranostics
: This study aims to assess whole-mount Gleason grading (GG) in prostate cancer (PCa) accurately using a multiomics machine learning (ML) model and to compare its performance with biopsy-proven GG (bxGG) assessment. : A total of 146 patients with PCa...

Development and Validation of a Biparametric MRI Deep Learning Radiomics Model with Clinical Characteristics for Predicting Perineural Invasion in Patients with Prostate Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: Perineural invasion (PNI) is an important prognostic biomarker for prostate cancer (PCa). This study aimed to develop and validate a predictive model integrating biparametric MRI-based deep learning radiomics and clinical ch...