AIMC Topic: Protein Kinase Inhibitors

Clear Filters Showing 31 to 40 of 135 articles

In Silico Insights: QSAR Modeling of TBK1 Kinase Inhibitors for Enhanced Drug Discovery.

Journal of chemical information and modeling
TBK1, or TANK-binding kinase 1, is an enzyme that functions as a serine/threonine protein kinase. It plays a crucial role in various cellular processes, including the innate immune response to viruses, cell proliferation, apoptosis, autophagy, and an...

Kinase Drug Discovery: Impact of Open Science and Artificial Intelligence.

Molecular pharmaceutics
Given their central role in signal transduction, protein kinases (PKs) were first implicated in cancer development, caused by aberrant intracellular signaling events. Since then, PKs have become major targets in different therapeutic areas. The prefe...

Leveraging multiple data types for improved compound-kinase bioactivity prediction.

Nature communications
Machine learning provides efficient ways to map compound-kinase interactions. However, diverse bioactivity data types, including single-dose and multi-dose-response assay results, present challenges. Traditional models utilize only multi-dose data, o...

Machine learning prediction and explanatory models of serious infections in patients with rheumatoid arthritis treated with tofacitinib.

Arthritis research & therapy
BACKGROUND: Patients with rheumatoid arthritis (RA) have an increased risk of developing serious infections (SIs) vs. individuals without RA; efforts to predict SIs in this patient group are ongoing. We assessed the ability of different machine learn...

Using machine learning to dissect host kinases required for Leishmania internalization and development.

Molecular and biochemical parasitology
The Leishmania life cycle alternates between promastigotes, found in the sandfly, and amastigotes, found in mammals. When an infected sandfly bites a host, promastigotes are engulfed by phagocytes (i.e., neutrophils, dendritic cells, and macrophages)...

Chemical analogue based drug design for cancer treatment targeting PI3K: integrating machine learning and molecular modeling.

Molecular diversity
Cancer is a generic term for a group of disorders defined by uncontrolled cell growth and the potential to invade or spread to other parts of the body. Gene and epigenetic alterations disrupt normal cellular control, leading to abnormal cell prolifer...

Identification of mycobacterial Thymidylate kinase inhibitors: a comprehensive pharmacophore, machine learning, molecular docking, and molecular dynamics simulation studies.

Molecular diversity
Thymidylate kinase (TMK) is a pivotal enzyme in Mycobacterium tuberculosis (Mtb), crucial for phosphorylating thymidine monophosphate (dTMP) to thymidine diphosphate (dTDP), thereby playing a critical role in DNA biosynthesis. Dysregulation or inhibi...

Discovery of novel ULK1 inhibitors through machine learning-guided virtual screening and biological evaluation.

Future medicinal chemistry
Build a virtual screening model for ULK1 inhibitors based on artificial intelligence. Build machine learning and deep learning classification models and combine molecular docking and biological evaluation to screen ULK1 inhibitors from 13 million co...

E-pharmacophore and deep learning based high throughput virtual screening for identification of CDPK1 inhibitors of Cryptosporidium parvum.

Computational biology and chemistry
Cryptosporidiosis, a prevalent gastrointestinal illness worldwide, is caused by the protozoan parasite Cryptosporidium parvum. Calcium-dependent protein kinase 1 (CpCDPK1), crucial for the parasite's life cycle, serves as a promising drug target due ...

Machine Learning Prediction of On/Off Target-driven Clinical Adverse Events.

Pharmaceutical research
OBJECTIVE: Currently, 90% of clinical drug development fails, where 30% of these failures are due to clinical toxicity. The current extensive animal toxicity studies are not predictive of clinical adverse events (AEs) at clinical doses, while current...