AIMC Topic: Radiation Dosage

Clear Filters Showing 11 to 20 of 537 articles

Automated opportunistic screening for osteoporosis using deep learning-based automatic segmentation and radiomics on proximal femur images from low-dose abdominal CT.

BMC musculoskeletal disorders
RATIONALE AND OBJECTIVES: To establish an automated osteoporosis detection model based on low-dose abdominal CT (LDCT). This model combined a deep learning-based automatic segmentation of the proximal femur with a radiomics-based bone status classifi...

An artificial intelligence model for predicting an appropriate mAs with target exposure indicator for chest digital radiography.

Scientific reports
In digital radiography, image quality is synergistically affected by anatomy-specific examinations, exposure factors, body parameters, detector types, and vendors/systems. However, estimating appropriate exposure factors before radiography with optim...

Phantom-based evaluation of image quality in Transformer-enhanced 2048-matrix CT imaging at low and ultralow doses.

Japanese journal of radiology
PURPOSE: To compare the quality of standard 512-matrix, standard 1024-matrix, and Swin2SR-based 2048-matrix phantom images under different scanning protocols.

An isodose-constrained automatic treatment planning strategy using a multicriteria predicted dose rating.

Medical physics
BACKGROUND: Previous knowledge-based planning studies have demonstrated the feasibility of predicting three-dimensional photon dose distributions and subsequently generating treatment plans. The steepness of dose fall-off represents a critical metric...

Improved unsupervised 3D lung lesion detection and localization by fusing global and local features: Validation in 3D low-dose computed tomography.

Medical image analysis
Unsupervised anomaly detection (UAD) is crucial in low-dose computed tomography (LDCT). Recent AI technologies, leveraging global features, have enabled effective UAD with minimal training data of normal patients. However, this approach, devoid of ut...

Uncertainty quantification for CT dosimetry based on 10 281 subjects using automatic image segmentation and fast Monte Carlo calculations.

Medical physics
BACKGROUND: Computed tomography (CT) scans are a major source of medical radiation exposure worldwide. In countries like China, the frequency of CT scans has grown rapidly, thus making available a large volume of organ dose information. With modern c...

Enhancing synchrotron radiation micro-CT images using deep learning: an application of Noise2Inverse on bone imaging.

Journal of synchrotron radiation
In bone-imaging research, in situ synchrotron radiation micro-computed tomography (SRµCT) mechanical tests are used to investigate the mechanical properties of bone in relation to its microstructure. Low-dose computed tomography (CT) is used to prese...

Proton dose calculation with transformer: Transforming spot map to dose.

Medical physics
BACKGROUND: Conventional proton dose calculation methods are either time- and resource-intensive, like Monte Carlo (MC) simulations, or they sacrifice accuracy, as seen with analytical methods. This trade-off between computational efficiency and accu...

Deep learning techniques for proton dose prediction across multiple anatomical sites and variable beam configurations.

Physics in medicine and biology
To evaluate the impact of beam mask implementation and data aggregation on artificial intelligence-based dose prediction accuracy in proton therapy, with a focus on scenarios involving limited or highly heterogeneous datasets.In this study, 541 prost...

Preliminary phantom study of four-dimensional computed tomographic angiography for renal artery mapping: Low-tube voltage and low-contrast volume imaging with deep learning-based reconstruction.

Radiography (London, England : 1995)
INTRODUCTION: A hybrid angio-CT system with 320-row detectors and deep learning-based reconstruction (DLR), provides additional imaging via 4D-CT angiography (CTA), potentially shortening procedure time and reducing DSA acquisitions, contrast media, ...