AIMC Topic: Radiographic Image Enhancement

Clear Filters Showing 11 to 20 of 104 articles

Deep Learning for Contrast Enhanced Mammography - A Systematic Review.

Academic radiology
BACKGROUND/AIM: Contrast-enhanced mammography (CEM) is a relatively novel imaging technique that enables both anatomical and functional breast imaging, with improved diagnostic performance compared to standard 2D mammography. The aim of this study is...

Contrast-enhanced thin-slice abdominal CT with super-resolution deep learning reconstruction technique: evaluation of image quality and visibility of anatomical structures.

Japanese journal of radiology
PURPOSE: To compare image quality and visibility of anatomical structures on contrast-enhanced thin-slice abdominal CT images reconstructed using super-resolution deep learning reconstruction (SR-DLR), deep learning-based reconstruction (DLR), and hy...

Application of a Deep Learning-Based Contrast-Boosting Algorithm to Low-Dose Computed Tomography Pulmonary Angiography With Reduced Iodine Load.

Journal of computer assisted tomography
OBJECTIVE: The aim of this study was to assess the effectiveness of a deep learning-based image contrast-boosting algorithm by enhancing the image quality of low-dose computed tomography pulmonary angiography at reduced iodine load.

A deep learning approach for virtual contrast enhancement in Contrast Enhanced Spectral Mammography.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Contrast Enhanced Spectral Mammography (CESM) is a dual-energy mammographic imaging technique that first requires intravenously administering an iodinated contrast medium. Then, it collects both a low-energy image, comparable to standard mammography,...

A deep-learning-based scatter correction with water equivalent path length map for digital radiography.

Radiological physics and technology
We proposed a new deep learning (DL) model for accurate scatter correction in digital radiography. The proposed network featured a pixel-wise water equivalent path length (WEPL) map of subjects with diverse sizes and 3D inner structures. The proposed...

A Deep-Learning Model for Predicting the Efficacy of Non-vascularized Fibular Grafting Using Digital Radiography.

Academic radiology
RATIONALE AND OBJECTIVES: To develop a fully automated deep-learning (DL) model using digital radiography (DR) with relatively high accuracy for predicting the efficacy of non-vascularized fibular grafting (NVFG) and identifying suitable patients for...

Deep learning, radiomics and radiogenomics applications in the digital breast tomosynthesis: a systematic review.

BMC bioinformatics
BACKGROUND: Recent advancements in computing power and state-of-the-art algorithms have helped in more accessible and accurate diagnosis of numerous diseases. In addition, the development of de novo areas in imaging science, such as radiomics and rad...