AIMC Topic: Radiographic Image Interpretation, Computer-Assisted

Clear Filters Showing 61 to 70 of 1260 articles

Histological proven AI performance in the UKLS CT lung cancer screening study: Potential for workload reduction.

European journal of cancer (Oxford, England : 1990)
PURPOSE: Artificial intelligence (AI) could reduce lung cancer screening computer tomography (CT)-reading workload if used as a first-reader, ruling-out negative CT-scans at baseline. Evidence is lacking to support AI performance when compared to gol...

Deep Learning-Enhanced Ultra-high-resolution CT Imaging for Superior Temporal Bone Visualization.

Academic radiology
RATIONALE AND OBJECTIVES: This study assesses the image quality of temporal bone ultra-high-resolution (UHR) Computed tomography (CT) scans in adults and children using hybrid iterative reconstruction (HIR) and a novel, vendor-specific deep learning-...

Intraoperative stenosis detection in X-ray coronary angiography via temporal fusion and attention-based CNN.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
BACKGROUND AND OBJECTIVE: Coronary artery disease (CAD), the leading cause of mortality, is caused by atherosclerotic plaque buildup in the arteries. The gold standard for the diagnosis of CAD is via X-ray coronary angiography (XCA) during percutaneo...

Multi-dimensional consistency learning between 2D Swin U-Net and 3D U-Net for intestine segmentation from CT volume.

International journal of computer assisted radiology and surgery
PURPOSE: The paper introduces a novel two-step network based on semi-supervised learning for intestine segmentation from CT volumes. The intestine folds in the abdomen with complex spatial structures and contact with neighboring organs that bring dif...

Automated Coronary Artery Segmentation with 3D PSPNET using Global Processing and Patch Based Methods on CCTA Images.

Cardiovascular engineering and technology
The prevalence of coronary artery disease (CAD) has become the major cause of death across the world in recent years. The accurate segmentation of coronary artery is important in clinical diagnosis and treatment of coronary artery disease (CAD) such ...

Automated segmentation by SCA-UNet can be directly used for radiomics diagnosis of thymic epithelial tumors.

European journal of radiology
BACKGROUND: Automatic segmentation of thymic lesions in preoperative computed tomography (CT) images is crucial for accurate diagnosis but remains time-consuming. Although UNet is widely used in medical imaging, its performance is limited by the inhe...

Deep learning based coronary vessels segmentation in X-ray angiography using temporal information.

Medical image analysis
Invasive coronary angiography (ICA) is the gold standard imaging modality during cardiac interventions. Accurate segmentation of coronary vessels in ICA is required for aiding diagnosis and creating treatment plans. Current automated algorithms for v...

Prior knowledge-based multi-task learning network for pulmonary nodule classification.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
The morphological characteristics of pulmonary nodule, also known as the attributes, are crucial for classification of benign and malignant nodules. In clinical, radiologists usually conduct a comprehensive analysis of correlations between different ...

Machine-learning tool for classifying pulmonary hypertension via expert reader-provided CT features: An educational resource for non-dedicated radiologists.

European journal of radiology
PURPOSE: Pulmonary hypertension (PH) is a complex disease classified into five groups (I-V) by the European Society of Cardiology/European Respiratory Society (ESC/ERS) guidelines. Chest contrast-enhanced computed tomography (CECT) is crucial in the ...