AIMC Topic: Radiologists

Clear Filters Showing 11 to 20 of 497 articles

AI-assisted radiologists vs. standard double reading for rib fracture detection on CT images: A real-world clinical study.

PloS one
To evaluate the diagnostic accuracy of artificial intelligence (AI) assisted radiologists and standard double-reading in real-world clinical settings for rib fractures (RFs) detection on CT images. This study included 243 consecutive chest trauma pat...

Diagnostic Performance of Different Examination Types and Learning Curves of Radiologists for 5G-Based Robot-Assisted Tele-Ultrasonography: A Prospective and Large-Scale Study.

Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine
OBJECTIVE: To investigate the feasibility of remotely providing routine ultrasound (US) examinations to patients using a fifth-generation-based robot-assisted tele-ultrasonography (RATU) system in a real-world setting.

Discrimination of Radiologists' Experience Level Using Eye-Tracking Technology and Machine Learning: Case Study.

JMIR formative research
BACKGROUND: Perception-related errors comprise most diagnostic mistakes in radiology. To mitigate this problem, radiologists use personalized and high-dimensional visual search strategies, otherwise known as search patterns. Qualitative descriptions ...

Machine Learning to Detect Cervical Spine Fractures Missed by Radiologists on CT: Analysis Using Seven Award-Winning Models From the 2022 RSNA Cervical Spine Fracture AI Challenge.

AJR. American journal of roentgenology
Available data on radiologists' missed cervical spine fractures are based primarily on studies using human reviewers to identify errors on reevaluation; such studies do not capture the full extent of missed fractures. The purpose of this study was ...

Consensus Between Radiologists, Specialists in Internal Medicine, and AI Software on Chest X-Rays in a Hospital-at-Home Service: Prospective Observational Study.

JMIR formative research
BACKGROUND: Home hospitalization is a care modality growing in popularity worldwide. Telemedicine-driven hospital-at-home (HAH) services could replace traditional hospital departments for selected patients. Chest x-rays typically serve as a key diagn...

ItpCtrl-AI: End-to-end interpretable and controllable artificial intelligence by modeling radiologists' intentions.

Artificial intelligence in medicine
Using Deep Learning in computer-aided diagnosis systems has been of great interest due to its impressive performance in the general domain and medical domain. However, a notable challenge is the lack of explainability of many advanced models, which p...

Release of complex imaging reports to patients, do radiologists trust AI to help?

Current problems in diagnostic radiology
BACKGROUND: As a result of the 21st Century Cures Act, radiology reports are immediately released to patients. However, these reports are often too complex for the lay patient, potentially leading to stress and anxiety. While solutions such as patien...