AIMC Topic: Radiotherapy Dosage

Clear Filters Showing 171 to 180 of 497 articles

Deep Learning-Guided Dosimetry for Mitigating Local Failure of Patients With Non-Small Cell Lung Cancer Receiving Stereotactic Body Radiation Therapy.

International journal of radiation oncology, biology, physics
PURPOSE: Non-small cell lung cancer (NSCLC) stereotactic body radiation therapy with 50 Gy/5 fractions is sometimes considered controversial, as the nominal biologically effective dose (BED) of 100 Gy is felt by some to be insufficient for long-term ...

Toward a deep learning-based magnetic resonance imaging only workflow for postimplant dosimetry in I-125 seed brachytherapy for prostate cancer.

Brachytherapy
BACKGROUND AND PURPOSE: The current standard imaging-technique for creating postplans in seed prostate brachytherapy is computed tomography (CT), that is associated with additional radiation exposure and poor soft tissue contrast. To establish a magn...

Deep learning based MLC aperture and monitor unit prediction as a warm start for breast VMAT optimisation.

Physics in medicine and biology
. Automated treatment planning today is focussed on non-exact, two-step procedures. Firstly, dose-volume histograms (DVHs) or 3D dose distributions are predicted from the patient anatomy. Secondly, these are converted in multi-leaf collimator (MLC) a...

Feasibility of Monte Carlo dropout-based uncertainty maps to evaluate deep learning-based synthetic CTs for adaptive proton therapy.

Medical physics
BACKGROUND: Deep learning has shown promising results to generate MRI-based synthetic CTs and to enable accurate proton dose calculations on MRIs. For clinical implementation of synthetic CTs, quality assurance tools that verify their quality and rel...

Essentially unedited deep-learning-based OARs are suitable for rigorous oropharyngeal and laryngeal cancer treatment planning.

Journal of applied clinical medical physics
Quality of organ at risk (OAR) autosegmentation is often judged by concordance metrics against the human-generated gold standard. However, the ultimate goal is the ability to use unedited autosegmented OARs in treatment planning, while maintaining th...

Predictive modeling of dose-volume parameters of carcinoma tongue cases using machine learning models.

Medical dosimetry : official journal of the American Association of Medical Dosimetrists
The aim of this study is to create a single institution-based machine learning model for a dose prediction generation tool for post-operative carcinoma of the tongue cases prospectively. Intensity-modulated radiotherapy (IMRT) plans for 20 patients w...

Robust stochastic optimization of needle configurations for robotic HDR prostate brachytherapy.

Medical physics
BACKGROUND: Ideally, inverse planning for HDR brachytherapy (BT) should include the pose of the needles which define the trajectory of the source. This would be particularly interesting when considering the additional freedom and accuracy in needle p...

Technical note: Evaluation of deep learning based synthetic CTs clinical readiness for dose and NTCP driven head and neck adaptive proton therapy.

Medical physics
BACKGROUND: Adaptive proton therapy workflows rely on accurate imaging throughout the treatment course. Our centre currently utilizes weekly repeat CTs (rCTs) for treatment monitoring and plan adaptations. However, deep learning-based methods have re...

Beam mask and sliding window-facilitated deep learning-based accurate and efficient dose prediction for pencil beam scanning proton therapy.

Medical physics
BACKGROUND: Accurate and efficient dose calculation is essential for on-line adaptive planning in proton therapy. Deep learning (DL) has shown promising dose prediction results in photon therapy. However, there is a scarcity of DL-based dose predicti...