AIMC Topic: Radiotherapy Dosage

Clear Filters Showing 11 to 20 of 480 articles

Development and validation of Prediction models for radiation-induced hypoglossal neuropathy in patients with nasopharyngeal carcinoma.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: To establish predictive models for radiation-induced hypoglossal neuropathy (RIHN) in patients with nasopharyngeal carcinoma (NPC) after intensity-modulated radiotherapy (IMRT).

Rapid dose prediction for lung CyberKnife radiotherapy plans utilizing a deep learning approach by incorporating dosimetric features delivered by noncoplanar beams.

Biomedical physics & engineering express
. The dose distribution of lung cancer patients treated with the CyberKnife (CK) system is influenced by various factors, including tumor location and the direction of CK beams. The objective of this study is to present a deep learning approach that ...

Open-source deep-learning models for segmentation of normal structures for prostatic and gynecological high-dose-rate brachytherapy: Comparison of architectures.

Journal of applied clinical medical physics
BACKGROUND: The use of deep learning-based auto-contouring algorithms in various treatment planning services is increasingly common. There is a notable deficit of commercially or publicly available models trained on large or diverse datasets containi...

An isodose-constrained automatic treatment planning strategy using a multicriteria predicted dose rating.

Medical physics
BACKGROUND: Previous knowledge-based planning studies have demonstrated the feasibility of predicting three-dimensional photon dose distributions and subsequently generating treatment plans. The steepness of dose fall-off represents a critical metric...

An extension to the OVH concept for knowledge-based dose volume histogram prediction in lung tumor volumetric-modulated arc therapy.

Journal of applied clinical medical physics
PURPOSE: Volumetric-modulated arc therapy (VMAT) treatment planning allows a compromise between a sufficient coverage of the planning target volume (PTV) and a simultaneous sparing of organs-at-risk (OARs). Particularly in the case of lung tumors, de...

Toward a human-centric co-design methodology for AI detection of differences between planned and delivered dose in radiotherapy.

Journal of applied clinical medical physics
INTRODUCTION: Many artificial intelligence (AI) solutions have been proposed to enhance the radiotherapy (RT) workflow, but limited applications have been implemented to date, suggesting an implementation gap. One contributing factor to this gap is a...

Proton dose calculation with transformer: Transforming spot map to dose.

Medical physics
BACKGROUND: Conventional proton dose calculation methods are either time- and resource-intensive, like Monte Carlo (MC) simulations, or they sacrifice accuracy, as seen with analytical methods. This trade-off between computational efficiency and accu...

Deep learning techniques for proton dose prediction across multiple anatomical sites and variable beam configurations.

Physics in medicine and biology
To evaluate the impact of beam mask implementation and data aggregation on artificial intelligence-based dose prediction accuracy in proton therapy, with a focus on scenarios involving limited or highly heterogeneous datasets.In this study, 541 prost...

Deep learning-based segmentation of head and neck organs at risk on CBCT images with dosimetric assessment for radiotherapy.

Physics in medicine and biology
Cone beam computed tomography (CBCT) has become an essential tool in head and neck cancer (HNC) radiotherapy (RT) treatment delivery. Automatic segmentation of the organs at risk (OARs) on CBCT can trigger and accelerate treatment replanning but is s...

A deep learning model based on Mamba for automatic segmentation in cervical cancer brachytherapy.

Scientific reports
This study developed and evaluated an automatic segmentation model based on the Mamba framework (AM-UNet) for rapid and precise delineation of high-risk clinical target volume (HRCTV) and organs at risk (OARs) in cervical cancer brachytherapy. Using ...