AIMC Topic: Radiotherapy, Intensity-Modulated

Clear Filters Showing 61 to 70 of 288 articles

Clinical implementation and evaluation of deep learning-assisted automatic radiotherapy treatment planning for lung cancer.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: The purpose of the study is to investigate the clinical application of deep learning (DL)-assisted automatic radiotherapy planning for lung cancer.

Improving the performance of deep learning models in predicting and classifying gamma passing rates with discriminative features and a class balancing technique: a retrospective cohort study.

Radiation oncology (London, England)
BACKGROUND: The purpose of this study was to improve the deep learning (DL) model performance in predicting and classifying IMRT gamma passing rate (GPR) by using input features related to machine parameters and a class balancing technique.

Combined deep learning and radiomics in pretreatment radiation esophagitis prediction for patients with esophageal cancer underwent volumetric modulated arc therapy.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
PURPOSE: To develop a combined radiomics and deep learning (DL) model in predicting radiation esophagitis (RE) of a grade ≥ 2 for patients with esophageal cancer (EC) underwent volumetric modulated arc therapy (VMAT) based on computed tomography (CT)...

Localized fine-tuning and clinical evaluation of deep-learning based auto-segmentation (DLAS) model for clinical target volume (CTV) and organs-at-risk (OAR) in rectal cancer radiotherapy.

Radiation oncology (London, England)
BACKGROUND AND PURPOSE: Various deep learning auto-segmentation (DLAS) models have been proposed, some of which have been commercialized. However, the issue of performance degradation is notable when pretrained models are deployed in the clinic. This...

Development of a risk prediction model for radiation dermatitis following proton radiotherapy in head and neck cancer using ensemble machine learning.

Radiation oncology (London, England)
PURPOSE: This study aims to develop an ensemble machine learning-based (EML-based) risk prediction model for radiation dermatitis (RD) in patients with head and neck cancer undergoing proton radiotherapy, with the goal of achieving superior predictiv...

From plan to delivery: Machine learning based positional accuracy prediction of multi-leaf collimator and estimation of delivery effect in volumetric modulated arc therapy.

Journal of applied clinical medical physics
PURPOSE: The positional accuracy of MLC is an important element in establishing the exact dosimetry in VMAT. We comprehensively analyzed factors that may affect MLC positional accuracy in VMAT, and constructed a model to predict MLC positional deviat...

Multi-omics deep learning for radiation pneumonitis prediction in lung cancer patients underwent volumetric modulated arc therapy.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: To evaluate the feasibility and accuracy of radiomics, dosiomics, and deep learning (DL) in predicting Radiation Pneumonitis (RP) in lung cancer patients underwent volumetric modulated arc therapy (VMAT) to improve radiother...

Error detection for radiotherapy planning validation based on deep learning networks.

Journal of applied clinical medical physics
BACKGROUND: Quality assurance (QA) of patient-specific treatment plans for intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) necessitates prior validation. However, the standard methodology exhibits deficiencies...

A deep learning-based 3D Prompt-nnUnet model for automatic segmentation in brachytherapy of postoperative endometrial carcinoma.

Journal of applied clinical medical physics
PURPOSE: To create and evaluate a three-dimensional (3D) Prompt-nnUnet module that utilizes the prompts-based model combined with 3D nnUnet for producing the rapid and consistent autosegmentation of high-risk clinical target volume (HR CTV) and organ...