AIMC Topic: Radiotherapy, Intensity-Modulated

Clear Filters Showing 81 to 90 of 289 articles

Deep learning-based tools to distinguish plan-specific from generic deviations in EPID-based in vivo dosimetry.

Medical physics
BACKGROUND: Dose distributions calculated with electronic portal imaging device (EPID)-based in vivo dosimetry (EIVD) differ from planned dose distributions due to generic and plan-specific deviations. Generic deviations are characteristic to a class...

Deep learning based MLC aperture and monitor unit prediction as a warm start for breast VMAT optimisation.

Physics in medicine and biology
. Automated treatment planning today is focussed on non-exact, two-step procedures. Firstly, dose-volume histograms (DVHs) or 3D dose distributions are predicted from the patient anatomy. Secondly, these are converted in multi-leaf collimator (MLC) a...

Essentially unedited deep-learning-based OARs are suitable for rigorous oropharyngeal and laryngeal cancer treatment planning.

Journal of applied clinical medical physics
Quality of organ at risk (OAR) autosegmentation is often judged by concordance metrics against the human-generated gold standard. However, the ultimate goal is the ability to use unedited autosegmented OARs in treatment planning, while maintaining th...

Predictive modeling of dose-volume parameters of carcinoma tongue cases using machine learning models.

Medical dosimetry : official journal of the American Association of Medical Dosimetrists
The aim of this study is to create a single institution-based machine learning model for a dose prediction generation tool for post-operative carcinoma of the tongue cases prospectively. Intensity-modulated radiotherapy (IMRT) plans for 20 patients w...

Technical note: Evaluation of deep learning based synthetic CTs clinical readiness for dose and NTCP driven head and neck adaptive proton therapy.

Medical physics
BACKGROUND: Adaptive proton therapy workflows rely on accurate imaging throughout the treatment course. Our centre currently utilizes weekly repeat CTs (rCTs) for treatment monitoring and plan adaptations. However, deep learning-based methods have re...

Beam mask and sliding window-facilitated deep learning-based accurate and efficient dose prediction for pencil beam scanning proton therapy.

Medical physics
BACKGROUND: Accurate and efficient dose calculation is essential for on-line adaptive planning in proton therapy. Deep learning (DL) has shown promising dose prediction results in photon therapy. However, there is a scarcity of DL-based dose predicti...

Automatic dose prediction using deep learning and plan optimization with finite-element control for intensity modulated radiation therapy.

Medical physics
BACKGROUND: Automatic solutions for generating radiotherapy treatment plans using deep learning (DL) have been investigated by mimicking the voxel's dose. However, plan optimization using voxel-dose features has not been extensively studied.

Deep learning in MRI-guided radiation therapy: A systematic review.

Journal of applied clinical medical physics
Recent advances in MRI-guided radiation therapy (MRgRT) and deep learning techniques encourage fully adaptive radiation therapy (ART), real-time MRI monitoring, and the MRI-only treatment planning workflow. Given the rapid growth and emergence of new...

Deep-learning Method for the Prediction of Three-Dimensional Dose Distribution for Left Breast Cancer Conformal Radiation Therapy.

Clinical oncology (Royal College of Radiologists (Great Britain))
AIMS: An increase in the demand of a new generation of radiotherapy planning systems based on learning approaches has been reported. At this stage, the new approach is able to improve the planning speed while saving a reasonable level of plan quality...

Deep learning-based dose prediction to improve the plan quality of volumetric modulated arc therapy for gynecologic cancers.

Medical physics
BACKGROUND: In recent years, deep-learning models have been used to predict entire three-dimensional dose distributions. However, the usability of dose predictions to improve plan quality should be further investigated.