AIMC Topic: Receptors, Antigen, T-Cell

Clear Filters Showing 1 to 10 of 52 articles

High-fidelity in silico generation and augmentation of TCR repertoire data using generative adversarial networks.

Scientific reports
Engineered T-cell receptor (eTCR) systems rely on accurately generated T-cell receptor (TCR) sequences to enhance immunotherapy predictability and efficacy. The most variable and crucial part of the TCR receptor is the CDR3 sequence region. Current m...

Assessing the generalization capabilities of TCR binding predictors via peptide distance analysis.

PloS one
Understanding the interaction between T Cell Receptors (TCRs) and peptide-bound Major Histocompatibility Complexes (pMHCs) is crucial for comprehending immune responses and developing targeted immunotherapies. While recent machine learning (ML) model...

Celluloepidemiology-A paradigm for quantifying infectious disease dynamics on a population level.

Science advances
To complement serology as a tool in public health interventions, we introduced the "celluloepidemiology" paradigm where we leveraged pathogen-specific T cell responses at a population level to advance our epidemiological understanding of infectious d...

Engineering TCR-controlled fuzzy logic into CAR T cells enhances therapeutic specificity.

Cell
Chimeric antigen receptor (CAR) T cell immunotherapy represents a breakthrough in the treatment of hematological malignancies, but poor specificity has limited its applicability to solid tumors. By contrast, natural T cells harboring T cell receptors...

T-cell receptor dynamics in digestive system cancers: a multi-layer machine learning approach for tumor diagnosis and staging.

Frontiers in immunology
BACKGROUND: T-cell receptor (TCR) repertoires provide insights into tumor immunology, yet their variations across digestive system cancers are not well understood. Characterizing TCR differences between colorectal cancer (CRC) and gastric cancer (GC)...

MIST: An interpretable and flexible deep learning framework for single-T cell transcriptome and receptor analysis.

Science advances
Joint analysis of transcriptomic and T cell receptor (TCR) features at single-cell resolution provides a powerful approach for in-depth T cell immune function research. Here, we introduce a deep learning framework for single-T cell transcriptome and ...

GRATCR: Epitope-Specific T Cell Receptor Sequence Generation With Data-Efficient Pre-Trained Models.

IEEE journal of biomedical and health informatics
T cell receptors (TCRs) play a crucial role in numerous immunotherapies targeting tumor cells. However, their acquisition and optimization present significant challenges, involving laborious and time-consuming wet lab experimental resource. Deep gene...

Disease diagnostics using machine learning of B cell and T cell receptor sequences.

Science (New York, N.Y.)
Clinical diagnosis typically incorporates physical examination, patient history, various laboratory tests, and imaging studies but makes limited use of the human immune system's own record of antigen exposures encoded by receptors on B cells and T ce...

Deep learning-based prediction of autoimmune diseases.

Scientific reports
Autoimmune Diseases are a complex group of diseases caused by the immune system mistakenly attacking body tissues. Their etiology involves multiple factors such as genetics, environmental factors, and abnormalities in immune cells, making prediction ...

Machine learning-based integration reveals immunological heterogeneity and the clinical potential of T cell receptor (TCR) gene pattern in hepatocellular carcinoma.

Apoptosis : an international journal on programmed cell death
The T Cell Receptor (TCR) significantly contributes to tumor immunity, whereas the intricate interplay with the Hepatocellular Carcinoma (HCC) microenvironment and clinical significance remains largely unexplored. Here, we aimed to examine the functi...