Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
Jul 22, 2021
OBJECTIVES: Embolic strokes of unknown source (ESUS) are common and often suspected to be caused by unrecognized paroxysmal atrial fibrillation (AF). An AI-enabled ECG (AI-ECG) during sinus rhythm has been shown to identify patients with unrecognized...
BACKGROUND: We performed this study to establish a prediction model for 1-year neurological outcomes in out-of-hospital cardiac arrest (OHCA) patients who achieved return of spontaneous circulation (ROSC) immediately after ROSC using machine learning...
Clinical research in cardiology : official journal of the German Cardiac Society
Jul 14, 2021
OBJECTIVE: Machine learning (ML) algorithm can improve risk prediction because ML can select features and segment continuous variables effectively unbiased. We generated a risk score model for mortality with ML algorithms in East-Asian patients with ...
BACKGROUND: Vertebral fracture assessment (VFA) images are acquired in dual-energy (DE) or single-energy (SE) scan modes. Automated identification of vertebral compression fractures, from VFA images acquired using GE Healthcare scanners in DE mode, h...
International journal of environmental research and public health
May 11, 2021
Although advances in machine-learning healthcare applications promise great potential for innovative medical care, few data are available on the translational status of these new technologies. We aimed to provide a comprehensive characterization of t...
In this study, we aimed to develop and validate a machine learning-based mortality prediction model for hospitalized heat-related illness patients. After 2393 hospitalized patients were extracted from a multicentered heat-related illness registry in ...
INTRODUCTION: The SARS-CoV-2 pandemic has led to one of the most critical and boundless waves of publications in the history of modern science. The necessity to find and pursue relevant information and quantify its quality is broadly acknowledged. Mo...
Cox Proportional Hazards (CPH) analysis is the standard for survival analysis in oncology. Recently, several machine learning (ML) techniques have been adapted for this task. Although they have shown to yield results at least as good as classical met...
BACKGROUND: Tests are scarce resources, especially in low and middle-income countries, and the optimization of testing programs during a pandemic is critical for the effectiveness of the disease control. Hence, we aim to use the combination of sympto...
BACKGROUND: Predicting survival in myxoid liposarcoma (MLS) patients is very challenging given its propensity to metastasize and the controversial role of adjuvant therapy. The purpose of this study was to develop a machine-learning algorithm for the...