IMPORTANCE: Early palliative care interventions drive high-value care but currently are underused. Health care professionals face challenges in identifying patients who may benefit from palliative care.
IMPORTANCE: Better prediction of major bleeding after percutaneous coronary intervention (PCI) may improve clinical decisions aimed to reduce bleeding risk. Machine learning techniques, bolstered by better selection of variables, hold promise for enh...
OBJECTIVES: This study sought to determine whether machine learning can be used to better identify patients at risk for death or congestive heart failure (CHF) rehospitalization after percutaneous coronary intervention (PCI).
BACKGROUND: Driven by the recent ubiquity of big data and computing power, we established the Machine Learning Arthroplasty Laboratory (MLAL) to examine and apply artificial intelligence (AI) to musculoskeletal medicine.
Background and Purpose- Automatic segmentation of cerebral infarction on diffusion-weighted imaging (DWI) is typically performed based on a fixed apparent diffusion coefficient (ADC) threshold. Fixed ADC threshold methods may not be accurate because ...
INTRODUCTION: Left ventricular ejection fraction (LVEF) ≤35%, as current significant implantable cardioverter-defibrillator (ICD) indication for primary prevention of sudden cardiac death (SCD) in heart failure (HF) patients, has been widely recognis...
Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
May 15, 2019
OBJECTIVE: The manual adjudication of disease classification is time-consuming, error-prone, and limits scaling to large datasets. In ischemic stroke (IS), subtype classification is critical for management and outcome prediction. This study sought to...
Computer methods and programs in biomedicine
May 13, 2019
BACKGROUND AND OBJECTIVE: Patients with End- Stage Kidney Disease (ESKD) have a unique cardiovascular risk. This study aims at predicting, with a certain precision, death and cardiovascular diseases in dialysis patients.