AIMC Topic: Retrospective Studies

Clear Filters Showing 431 to 440 of 9163 articles

Machine Learning-Based Explainable Automated Nonlinear Computation Scoring System for Health Score and an Application for Prediction of Perioperative Stroke: Retrospective Study.

Journal of medical Internet research
BACKGROUND: Machine learning (ML) has the potential to enhance performance by capturing nonlinear interactions. However, ML-based models have some limitations in terms of interpretability.

The impact of multi-modality fusion and deep learning on adult age estimation based on bone mineral density.

International journal of legal medicine
INTRODUCTION: Age estimation, especially in adults, presents substantial challenges in different contexts ranging from forensic to clinical applications. Bone mineral density (BMD), with its distinct age-related variations, has emerged as a critical ...

Utilising Natural Language Processing to Identify Brain Tumor Patients for Clinical Trials: Development and Initial Evaluation.

World neurosurgery
BACKGROUND: Identifying patients eligible for clinical trials through eligibility screening is time and resource-intensive. Natural Language Processing (NLP) models may enhance clinical trial screening by extracting data from Electronic Health Record...

Deep learning by Vision Transformer to classify bacterial and fungal keratitis using different types of anterior segment images.

Computers in biology and medicine
PURPOSE: To develop three novel Vision Transformer (ViT) frameworks for the specific diagnosis of bacterial and fungal keratitis using different types of anterior segment images and compare their performances.

GPT for RCTs? Using AI to determine adherence to clinical trial reporting guidelines.

BMJ open
OBJECTIVES: Adherence to established reporting guidelines can improve clinical trial reporting standards, but attempts to improve adherence have produced mixed results. This exploratory study aimed to determine how accurate a large language model gen...

Interpretable machine learning models for prolonged Emergency Department wait time prediction.

BMC health services research
OBJECTIVE: Prolonged Emergency Department (ED) wait times lead to diminished healthcare quality. Utilizing machine learning (ML) to predict patient wait times could aid in ED operational management. Our aim is to perform a comprehensive analysis of M...

Machine Learning to Assist in Managing Acute Kidney Injury in General Wards: Multicenter Retrospective Study.

Journal of medical Internet research
BACKGROUND: Most artificial intelligence-based research on acute kidney injury (AKI) prediction has focused on intensive care unit settings, limiting their generalizability to general wards. The lack of standardized AKI definitions and reliance on in...

Predicting complications after laparoscopic surgery for ureteropelvic junction obstruction using machine learning models: a retrospective cohort study.

World journal of urology
PURPOSES: Postoperative complications in patients with ureteropelvic junction obstruction (UPJO) negatively impact surgical outcomes and may necessitate redo surgery. We aimed to predict the occurrence of postoperative complications in these patients...

Assessing the performance of an artificial intelligence based chatbot in the differential diagnosis of oral mucosal lesions: clinical validation study.

Clinical oral investigations
OBJECTIVES: Artificial intelligence (AI) is becoming more popular in medicine. The current study aims to investigate, primarily, if an AI-based chatbot, such as ChatGPT, could be a valid tool for assisting in establishing a differential diagnosis of ...

Accelerated intracranial time-of-flight MR angiography with image-based deep learning image enhancement reduces scan times and improves image quality at 3-T and 1.5-T.

Neuroradiology
PURPOSE: Three-dimensional time-of-flight magnetic resonance angiography (TOF-MRA) is effective for cerebrovascular disease assessment, but clinical application is limited by long scan times and low spatial resolution. Recent advances in deep learnin...