AIMC Topic: Retrospective Studies

Clear Filters Showing 511 to 520 of 9163 articles

Interpretable machine learning model for early morbidity risk prediction in patients with sepsis-induced coagulopathy: a multi-center study.

Frontiers in immunology
BACKGROUND: Sepsis-induced coagulopathy (SIC) is a complex condition characterized by systemic inflammation and coagulopathy. This study aimed to develop and validate a machine learning (ML) model to predict SIC risk in patients with sepsis.

Use of deep learning-based high-resolution magnetic resonance to identify intracranial and extracranial symptom-related plaques.

Neuroscience
This study aims to develop a deep learning model using high-resolution vessel wall imaging (HR-VWI) to differentiate symptom-related intracranial and extracranial plaques, which is crucial for stroke treatment and prevention. We retrospectively analy...

Predicting 30-day mortality in hemophagocytic lymphohistiocytosis: clinical features, biochemical parameters, and machine learning insights.

Annals of hematology
This study aims to evaluate the clinical characteristics and biochemical parameters of hemophagocytic lymphohistiocytosis (HLH) patients to predict 30-day mortality. Parameters analyzed include lymphocyte count (L), platelet count (PLT), total protei...

Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study.

Scientific reports
This study aimed to develop an interpretable machine learning model to predict methylene blue (MB) responsiveness in adult patients with refractory septic shock and to identify key factors influencing MB responsiveness using the SHapley Additive exPl...

Machine-learning models for the prediction of ideal surgical outcomes in patients with adult spinal deformity.

The bone & joint journal
AIMS: Adult spinal deformity (ASD) surgery can reduce pain and disability. However, the actual surgical efficacy of ASD in doing so is far from desirable, with frequent complications and limited improvement in quality of life. The accurate prediction...

Intelligent biofilm detection with ensemble of deep learning networks.

Medicina oral, patologia oral y cirugia bucal
BACKGROUND: Dental biofilm is traditionally identified visually, which can be challenging and time-consuming due to its color similarity with the tooth. The aim of this study was to evaluate the performance of U-Net neural networks for the automatic ...

Artificial intelligence-assisted precise preoperative prediction of lateral cervical lymph nodes metastasis in papillary thyroid carcinoma via a clinical-CT radiomic combined model.

International journal of surgery (London, England)
OBJECTIVES: This study aimed to develop an artificial intelligence-assisted model for the preoperative prediction of lateral cervical lymph node metastasis (LCLNM) in papillary thyroid carcinoma (PTC) using computed tomography (CT) radiomics, providi...

Clinical value of aortic arch morphology in transfemoral TAVR: artificial intelligence evaluation.

International journal of surgery (London, England)
BACKGROUND: The impact of aortic arch (AA) morphology on the management of the procedural details and the clinical outcomes of the transfemoral artery (TF)-transcatheter aortic valve replacement (TAVR) has not been evaluated. The goal of this study w...