AIMC Topic: Retrospective Studies

Clear Filters Showing 511 to 520 of 9539 articles

Development of a machine learning-based diagnostic model using hematological parameters to differentiate periductal mastitis from granulomatous lobular mastitis.

Science progress
ObjectiveNonpuerperal mastitis (NPM) is an inflammatory condition, including periductal mastitis (PDM) and granulomatous lobular mastitis (GLM). The clinical manifestations of PDM and GLM are highly similar, posing significant challenges in their dif...

Machine learning-based MRI radiomics to predict postoperative complications following peripheral nerve sheath tumour excision.

The Journal of hand surgery, European volume
This study sought to establish and validate a machine learning-based multi-sequence MRI radiomics model for predicting postoperative complications in patients with peripheral nerve sheath tumours. We conducted a retrospective analysis of 303 patients...

MRI radiomics combined with delta-radiomics model for predicting pathological complete response in locally advanced rectal cancer patients after neoadjuvant chemoradiotherapy: A multi-institutional study.

Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine
PURPOSE: To construct and validate a magnetic resonance imaging (MRI) radiomics combined with delta-radiomics and clinical information (C) model for predicting pathological complete response (pCR) in patients with locally advanced rectal cancer (LARC...

Remdesivir associated with reduced mortality in hospitalized COVID-19 patients: treatment effectiveness using real-world data and natural language processing.

BMC infectious diseases
BACKGROUND: Remdesivir (RDV) was the first antiviral approved for mild-to-moderate COVID-19 and for those patients at risk for progression to severe disease after clinical trials supported its association with improved outcomes. Real-world evidence (...

A High-resolution T2WI-based Deep Learning Model for Preoperative Discrimination Between T2 and T3 Rectal Cancer: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: To construct a deep learning model (DL) based on high-resolution T2-weighted images for preoperative differentiation between T2 and T3 stage rectal cancer (RC), and to compare its performance with experienced radiologists.

Deep learning-based prediction of enhanced CT scans for lymph node metastasis in esophageal squamous cell carcinoma.

Japanese journal of radiology
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) poses a significant global health challenge with a particularly grim prognosis. Accurate prediction of lymph node metastasis (LNM) in ESCC is crucial for optimizing treatment strategies and improv...

A comparison of an integrated and image-only deep learning model for predicting the disappearance of indeterminate pulmonary nodules.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
BACKGROUND: Indeterminate pulmonary nodules (IPNs) require follow-up CT to assess potential growth; however, benign nodules may disappear. Accurately predicting whether IPNs will resolve is a challenge for radiologists. Therefore, we aim to utilize d...

External Validation of an Artificial Intelligence Algorithm Using Biparametric MRI and Its Simulated Integration with Conventional PI-RADS for Prostate Cancer Detection.

Academic radiology
PURPOSE: Prostate imaging reporting and data systems (PI-RADS) experiences considerable variability in inter-reader performance. Artificial Intelligence (AI) algorithms were suggested to provide comparable performance to PI-RADS for assessing prostat...

Oxidative Stress Markers and Prediction of Severity With a Machine Learning Approach in Hospitalized Patients With COVID-19 and Severe Lung Disease: Observational, Retrospective, Single-Center Feasibility Study.

JMIR formative research
BACKGROUND: Serious pulmonary pathologies of infectious, viral, or bacterial origin are accompanied by inflammation and an increase in oxidative stress (OS). In these situations, biological measurements of OS are technically difficult to obtain, and ...