Branch retinal vein occlusion (BRVO) is a leading cause of visual impairment in working-age individuals, though predicting its occurrence from retinal vascular features alone remains challenging. We developed a deep learning model to predict BRVO bas...
OBJECTIVE: This study aimed to develop a predictive model using a random forest algorithm to determine the likelihood of postoperative adhesive small bowel obstruction (ASBO) in infants under 3 months with intestinal malrotation.
RATIONALE AND OBJECTIVES: To develop a machine learning (ML) model based on clinicopathological and imaging features to predict the Human Epidermal Growth Factor Receptor 2 (HER2) positive expression (HER2-p) of breast cancer (BC), and to compare its...
The American journal of emergency medicine
Jan 20, 2025
RATIONALE: Lung ultrasound, the most precise diagnostic tool for pleural effusions, is underutilized due to healthcare providers' limited proficiency. To address this, deep learning models can be trained to recognize pleural effusions. However, curre...
BACKGROUND: Accurate differentiation between benign and malignant pancreatic lesions is critical for effective patient management. This study aimed to develop and validate a novel deep learning network using baseline computed tomography (CT) images t...
OBJECTIVE: To explore the anatomical and clinical factors that affect the radiographic exposure time in radial artery cerebral angiography and to establish a model.
BACKGROUND: Postpartum depression (PPD) is a prevalent mental health issue with significant impacts on mothers and families. Exploring reliable predictors is crucial for the early and accurate prediction of PPD, which remains challenging.
OBJECTIVES: The objective is to develop and validate intratumoral and peritumoral ultrasomics models utilizing endoscopic ultrasonography (EUS) to predict pathological grading in pancreatic neuroendocrine tumors (PNETs).
INTRODUCTION: Artificial intelligence (AI) allows the optimization of diagnostic processes for hepatitis C virus (HCV) patients. Our objective was to evaluate the clinical, economic, and management benefits of an AI-based clinical decision support sy...
PURPOSE: The aim of the work is to develop a cascaded diffusion-based super-resolution model for low-resolution (LR) MR tagging acquisitions, which is integrated with parallel imaging to achieve highly accelerated MR tagging while enhancing the tag g...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.