AI Medical Compendium Topic:
Risk Factors

Clear Filters Showing 731 to 740 of 2309 articles

Prediction of hepatic metastasis in esophageal cancer based on machine learning.

Scientific reports
This study aimed to establish a machine learning (ML) model for predicting hepatic metastasis in esophageal cancer. We retrospectively analyzed patients with esophageal cancer recorded in the Surveillance, Epidemiology, and End Results (SEER) databas...

Determination of prognostic markers for COVID-19 disease severity using routine blood tests and machine learning.

Anais da Academia Brasileira de Ciencias
The need for the identification of risk factors associated to COVID-19 disease severity remains urgent. Patients' care and resource allocation can be potentially different and are defined based on the current classification of disease severity. This ...

Black-white differences in chronic stress exposures to predict preterm birth: interpretable, race/ethnicity-specific machine learning model.

BMC pregnancy and childbirth
BACKGROUND: Differential exposure to chronic stressors by race/ethnicity may help explain Black-White inequalities in rates of preterm birth. However, researchers have not investigated the cumulative, interactive, and population-specific nature of ch...

Exploratory risk prediction of type II diabetes with isolation forests and novel biomarkers.

Scientific reports
Type II diabetes mellitus (T2DM) is a rising global health burden due to its rapidly increasing prevalence worldwide, and can result in serious complications. Therefore, it is of utmost importance to identify individuals at risk as early as possible ...

Which surrogate insulin resistance indices best predict coronary artery disease? A machine learning approach.

Cardiovascular diabetology
BACKGROUND: Various surrogate markers of insulin resistance have been developed, capable of predicting coronary artery disease (CAD) without the need to detect serum insulin. For accurate prediction, they depend only on glucose and lipid profiles, as...

Development and validation of machine learning models to predict perioperative transfusion risk for hip fractures in the elderly.

Annals of medicine
BACKGROUND: Patients with hip fractures frequently need to receive perioperative transfusions of concentrated red blood cells due to preoperative anemia or surgical blood loss. However, the use of perioperative blood products increases the risk of ad...

Review of machine learning solutions for eating disorders.

International journal of medical informatics
BACKGROUND: Eating Disorders (EDs) are one of the most complex psychiatric disorders, with significant impairment of psychological and physical health, and psychosocial functioning, and are associated with low rates of early detection, low recovery a...

Testing Machine Learning Models to Predict Postoperative Ileus after Colorectal Surgery.

Current oncology (Toronto, Ont.)
Postoperative ileus (POI) is a common complication after colorectal surgery, leading to increased hospital stay and costs. This study aimed to explore patient comorbidities that contribute to the development of POI in the colorectal surgical populat...

Survival trend and outcome prediction for pediatric Hodgkin and non-Hodgkin lymphomas based on machine learning.

Clinical and experimental medicine
Pediatric Hodgkin and non-Hodgkin lymphomas differ from adult cases in biology and management, yet there is a lack of survival analysis tailored to pediatric lymphoma. We analyzed lymphoma data from 1975 to 2018, comparing survival trends between 7,8...