BACKGROUND: The current scores used to help diagnose acute appendicitis have a "gray" zone in which the diagnosis is usually inconclusive. Furthermore, the universal use of CT scanning is limited because of the radiation hazards and/or limited resour...
OBJECTIVES: This study investigated the diagnostic performance of dual-energy computed tomography (CT) and deep learning for the preoperative classification of equivocal lymph nodes (LNs) on CT images in thyroid cancer patients.
RATIONALE AND OBJECTIVES: To assess a deep learning application (DLA) for acute ischemic stroke (AIS) detection on brain magnetic resonance imaging (MRI) in the emergency room (ER) and the effect of T2-weighted imaging (T2WI) on its performance.
OBJECTIVE: To propose a convolutional neural network (EmbNet) for automatic pulmonary embolism detection on computed tomography pulmonary angiogram (CTPA) scans and to assess its diagnostic performance.
BACKGROUND/AIMS: Support vector machine-based automated grading (known as iGradingM) has been shown to be safe, cost-effective and robust in the diabetic retinopathy (DR) screening (DES) programme in Scotland. It triages screening episodes as gradabl...
Journal of clinical monitoring and computing
Jun 19, 2024
Hand hygiene among anesthesia personnel is important to prevent hospital-acquired infections in operating rooms; however, an efficient monitoring system remains elusive. In this study, we leverage a deep learning approach based on operating room vide...
BACKGROUND: Steatotic liver disease (SLD) is a growing phenomenon, and our understanding of its determinants has been limited by our ability to identify it clinically. Natural language processing (NLP) can potentially identify hepatic steatosis syste...
STUDY OBJECTIVE: Nonconvulsive status epilepticus is a commonly overlooked cause of altered mental status. This study assessed nonconvulsive status epilepticus prevalence in emergency department (ED) patients with acute neurologic presentations using...
BACKGROUND AND PURPOSE: Artificial intelligence (AI) has the potential to aid in the accurate diagnosis of hip fractures and reduce the workload of clinicians. We primarily aimed to develop and validate a convolutional neural network (CNN) for the au...
PURPOSE: To develop and validate an artificial intelligence (AI) application in a clinical setting to decide whether dynamic contrast-enhanced (DCE) sequences are necessary in multiparametric prostate MRI.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.