RATIONALE AND OBJECTIVES: To comprehensively assess the feasibility of low-dose computed tomography (LDCT) using deep learning image reconstruction (DLIR) for evaluating pulmonary subsolid nodules, which are challenging due to their susceptibility to...
INTRODUCTION: This study investigated the feasibility of single breath-hold (BH) diffusion-weighted MR imaging (DWI) using deep learning reconstruction (DLR) compared to navigator triggered (NT) DWI in patients with malignant liver tumors.
BACKGROUND: High-resolution (HR) 3D MR images provide detailed soft-tissue information that is useful in assessing long-term side-effects after treatment in childhood cancer survivors, such as morphological changes in brain structures. However, these...
BACKGROUND: Magnetic resonance imaging (MRI) is a crucial technique for both scientific research and clinical diagnosis. However, noise generated during MR data acquisition degrades image quality, particularly in hyperpolarized (HP) gas MRI. While de...
Neural networks : the official journal of the International Neural Network Society
Dec 4, 2024
Self-supervised learning for image denoising problems in the presence of denaturation for noisy data is a crucial approach in machine learning. However, theoretical understanding of the performance of the approach that uses denatured data is lacking....
Portable, low-field magnetic resonance imaging (LF-MRI) of the brain may facilitate point-of-care assessment of patients with Alzheimer's disease (AD) in settings where conventional MRI cannot. However, image quality is limited by a lower signal-to-n...
Journal of magnetic resonance (San Diego, Calif. : 1997)
Nov 29, 2024
In this study, we introduce a denoising method aimed at improving the contrast ratio in low-field MRI (LFMRI) using an advanced 3D deep convolutional residual network model. Our approach employs synthetic brain imaging datasets that closely mimic the...
Magnetic resonance imaging (MRI) provides detailed structural information of the internal body organs and soft tissue regions of a patient in clinical diagnosis for disease detection, localization, and progress monitoring. MRI scanner hardware manufa...
PURPOSE: In this study, we aimed to investigate the clinical feasibility of deep learning (DL)-based reconstruction applied to conventional diffusion-weighted imaging (cDWI) and synthetic diffusion-weighted imaging (sDWI) by comparing the DL reconstr...
In medical image analysis, the utilization of biophysical models for signal analysis offers valuable insights into the underlying tissue types and microstructural processes. In diffusion-weighted magnetic resonance imaging (DWI), a major challenge li...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.