AIMC Topic: Signal-To-Noise Ratio

Clear Filters Showing 61 to 70 of 870 articles

High resolution multi-delay arterial spin labeling with self-supervised deep learning denoising for pediatric choroid plexus perfusion MRI.

NeuroImage
Choroid plexus (CP) is an important brain structure that produces cerebrospinal fluid (CSF). CP perfusion has been studied using multi-delay arterial spin labeling (MD-ASL) in adults but not in pediatric populations due to the challenge of small CP s...

Non-parametric Bayesian deep learning approach for whole-body low-dose PET reconstruction and uncertainty assessment.

Medical & biological engineering & computing
Positron emission tomography (PET) imaging plays a pivotal role in oncology for the early detection of metastatic tumors and response to therapy assessment due to its high sensitivity compared to anatomical imaging modalities. The balance between ima...

Deep proximal gradient network for absorption coefficient recovery in photoacoustic tomography.

Physics in medicine and biology
The optical absorption properties of biological tissues in photoacoustic (PA) tomography are typically quantified by inverting acoustic measurements. Conventional approaches to solving the inverse problem of forward optical models often involve itera...

Motion-Compensated Multishot Pancreatic Diffusion-Weighted Imaging With Deep Learning-Based Denoising.

Investigative radiology
OBJECTIVES: Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase incons...

TagGen: Diffusion-based generative model for cardiac MR tagging super resolution.

Magnetic resonance in medicine
PURPOSE: The aim of the work is to develop a cascaded diffusion-based super-resolution model for low-resolution (LR) MR tagging acquisitions, which is integrated with parallel imaging to achieve highly accelerated MR tagging while enhancing the tag g...

AI integration into wavelength-based SPR biosensing: Advancements in spectroscopic analysis and detection.

Analytica chimica acta
BACKGROUND: In recent years, employing deep learning methods in the biosensing area has significantly reduced data analysis time and enhanced data interpretation and prediction accuracy. In some SPR fields, research teams have further enhanced detect...

Improving quantification accuracy of a nuclear Overhauser enhancement signal at -1.6 ppm at 4.7 T using a machine learning approach.

Physics in medicine and biology
A new nuclear Overhauser enhancement (NOE)-mediated saturation transfer MRI signal at -1.6 ppm, potentially from choline phospholipids and termed NOE(-1.6), has been reported in biological tissues at high magnetic fields. This signal shows promise fo...

Parallel convolutional neural network and empirical mode decomposition for high accuracy in motor imagery EEG signal classification.

PloS one
In recent years, the utilization of motor imagery (MI) signals derived from electroencephalography (EEG) has shown promising applications in controlling various devices such as wheelchairs, assistive technologies, and driverless vehicles. However, de...

Evaluation of a Deep Learning Denoising Algorithm for Dose Reduction in Whole-Body Photon-Counting CT Imaging: A Cadaveric Study.

Academic radiology
RATIONALE AND OBJECTIVES: Photon Counting CT (PCCT) offers advanced imaging capabilities with potential for substantial radiation dose reduction; however, achieving this without compromising image quality remains a challenge due to increased noise at...

Deep Network Regularization for Phase-Based Magnetic Resonance Electrical Properties Tomography With Stein's Unbiased Risk Estimator.

IEEE transactions on bio-medical engineering
Magnetic resonance imaging (MRI) can estimate tissue conductivity values using phase-based magnetic resonance electrical properties tomography (MR-EPT). However, this method is prone to noise amplification due to the Laplacian operator's sensitivity....