AIMC Topic: Suicidal Ideation

Clear Filters Showing 21 to 30 of 97 articles

Machine Learning Model Reveals Determinators for Admission to Acute Mental Health Wards From Emergency Department Presentations.

International journal of mental health nursing
This research addresses the critical issue of identifying factors contributing to admissions to acute mental health (MH) wards for individuals presenting to the emergency department (ED) with MH concerns as their primary issue, notably suicidality. T...

Breaking the silence: leveraging social interaction data to identify high-risk suicide users online using network analysis and machine learning.

Scientific reports
Suicidal thought and behavior (STB) is highly stigmatized and taboo. Prone to censorship, yet pervasive online, STB risk detection may be improved through development of uniquely insightful digital markers. Focusing on Sanctioned Suicide, an online p...

Gender-specific factors of suicidal ideation among high school students in Yunnan province, China: A machine learning approach.

Journal of affective disorders
BACKGROUND: Suicidal ideation (SI) assumes a pivotal role in predicting suicidal behaviors. The incidence of SI among high (junior and senior) school students is significantly higher than that of other age groups. The aim of this study is to explore ...

Identifying momentary suicidal ideation using machine learning in patients at high-risk for suicide.

Journal of affective disorders
BACKGROUND: Strategies to detect the presence of suicidal ideation (SI) or characteristics of ideation that indicate marked suicide risk are critically needed to guide interventions and improve care during care transition periods. Some studies indica...

Constructing prediction models and analyzing factors in suicidal ideation using machine learning, focusing on the older population.

PloS one
Suicide among the older population is a significant public health concern in South Korea. As the older individuals have long considered suicide before committing suicide trials, it is important to analyze the suicidal ideation that precedes the suici...

Neuroimaging and natural language processing-based classification of suicidal thoughts in major depressive disorder.

Translational psychiatry
Suicide is a growing public health problem around the world. The most important risk factor for suicide is underlying psychiatric illness, especially depression. Detailed classification of suicide in patients with depression can greatly enhance perso...

Evaluating generative AI responses to real-world drug-related questions.

Psychiatry research
Generative Artificial Intelligence (AI) systems such as OpenAI's ChatGPT, capable of an unprecedented ability to generate human-like text and converse in real time, hold potential for large-scale deployment in clinical settings such as substance use ...

Development and external validation of a logistic and a penalized logistic model using machine-learning techniques to predict suicide attempts: A multicenter prospective cohort study in Korea.

Journal of psychiatric research
Despite previous efforts to build statistical models for predicting the risk of suicidal behavior using machine-learning analysis, a high-accuracy model can lead to overfitting. Furthermore, internal validation cannot completely address this problem....

Machine learning identifies different related factors associated with depression and suicidal ideation in Chinese children and adolescents.

Journal of affective disorders
BACKGROUND: Depression and suicidal ideation often co-occur in children and adolescents, yet they possess distinct characteristics. This study sought to identify the different related factors associated with depression and suicidal ideation.

Temporal prediction of suicidal ideation in an ecological momentary assessment study with recurrent neural networks.

Journal of affective disorders
INTRODUCTION: Ecological Momentary Assessment (EMA) holds promise for providing insights into daily life experiences when studying mental health phenomena. However, commonly used mixed-effects linear statistical models do not fully utilize the richne...