AIMC Topic: Support Vector Machine

Clear Filters Showing 211 to 220 of 4696 articles

Predicting preterm birth using machine learning methods.

Scientific reports
Preterm birth is a significant public health concern, given its correlation with neonatal mortality and morbidity. The aetiology of preterm birth is complex and multifactorial. The objective of this study was to develop and compare machine learning m...

Dental Composite Performance Prediction Using Artificial Intelligence.

Journal of dental research
There is a need to increase the performance and longevity of dental composites and accelerate the translation of novel composites to the market. This study explores the use of artificial intelligence (AI), specifically machine learning (ML) models, t...

Predicting antipsychotic responsiveness using a machine learning classifier trained on plasma levels of inflammatory markers in schizophrenia.

Translational psychiatry
We apply machine learning techniques to navigate the multifaceted landscape of schizophrenia. Our method entails the development of predictive models, emphasizing peripheral inflammatory biomarkers, which are classified into treatment response subgro...

PhageDPO: A machine-learning based computational framework for identifying phage depolymerases.

Computers in biology and medicine
Bacteriophages (phages) are the most predominant and genetically diverse biological entities on Earth. Phages are viruses that infect bacteria and encode numerous proteins with potential biotechnological application. However, most phage-encoded prote...

Detection of brain tumors using a transfer learning-based optimized ResNet152 model in MR images.

Computers in biology and medicine
Brain tumors are incredibly harmful and can drastically reduce life expectancy. Most researchers use magnetic resonance (MR) scans to detect tumors because they can provide detailed images of the affected area. Recently, AI-based deep learning method...

Combining machine learning with external validation to explore necroptosis and immune response in moyamoya disease.

BMC immunology
Moyamoya disease (MMD) is a rare chronic vascular disease leads to cognitive impairment and stroke with its etiology unknown. The relationship between necroptosis or necroinflammation and MMD pathogenesis was poorly understood. Differentially express...

Use of machine learning algorithms to construct models of symptom burden cluster risk in breast cancer patients undergoing chemotherapy.

Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
PURPOSE: To develop models using different machine learning algorithms to predict high-risk symptom burden clusters in breast cancer patients undergoing chemotherapy, and to determine an optimal model.

The machine learning algorithm based on decision tree optimization for pattern recognition in track and field sports.

PloS one
This study aims to solve the problems of insufficient accuracy and low efficiency of the existing methods in sprint pattern recognition to optimize the training and competition strategies of athletes. Firstly, the data collected in this study come fr...

Discrimination of the Lame Limb in Horses Using a Machine Learning Method (Support Vector Machine) Based on Asymmetry Indices Measured by the EQUISYM System.

Sensors (Basel, Switzerland)
Lameness detection in horses is a critical challenge in equine veterinary practice, particularly when symptoms are mild. This study aimed to develop a predictive system using a support vector machine (SVM) to identify the affected limb in horses trot...

Machine Learning-Driven Identification of Molecular Subgroups in Medulloblastoma via Gene Expression Profiling.

Clinical oncology (Royal College of Radiologists (Great Britain))
AIMS: Medulloblastoma (MB) is the most prevalent malignant brain tumour in children, characterised by substantial molecular heterogeneity across its subgroups. Accurate classification is pivotal for personalised treatment strategies and prognostic as...