AIMC Topic: Support Vector Machine

Clear Filters Showing 231 to 240 of 4812 articles

Cell Wall-Based Machine Learning Models to Predict Plant Growth Using Onion Epidermis.

International journal of molecular sciences
The plant cell wall (CW) is a physical barrier that plays a dual role in plant physiology, providing structural support for growth and development. Understanding the dynamics of CW growth is crucial for optimizing crop yields. In this study, we emplo...

Which approach better predicts diabetes: Traditional econometric methods or machine learning? Evidence from a cross-sectional study in South Korea.

Computers in biology and medicine
To prevent chronic disease from getting worse, it is important to detect and predict it at an early stage. Therefore, the accuracy of the prediction is particularly important. To investigate the accuracy of different methods, this study compares the ...

Deep Learning-Based Detection of Aflatoxin B1 Contamination in Almonds Using Hyperspectral Imaging: A Focus on Optimized 3D Inception-ResNet Model.

Toxins
Aflatoxin B1, a toxic carcinogen frequently contaminating almonds, nuts, and food products, poses significant health risks. Therefore, a rapid and non-destructive detection method is crucial to detect aflatoxin B1-contaminated almonds to ensure food ...

Vowel segmentation impact on machine learning classification for chronic obstructive pulmonary disease.

Scientific reports
Vowel-based voice analysis is gaining attention as a potential non-invasive tool for COPD classification, offering insights into phonatory function. The growing need for voice data has necessitated the adoption of various techniques, including segmen...

Machine learning allows robust classification of lung neoplasm tissue using an electronic biopsy through minimally-invasive electrical impedance spectroscopy.

Scientific reports
New bronchoscopy techniques like radial probe endobronchial ultrasound have been developed for real-time sampling characterization, but their use is still limited. This study aims to use classification algorithms with minimally invasive electrical im...

Development of PDAC diagnosis and prognosis evaluation models based on machine learning.

BMC cancer
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is difficult to detect early and highly aggressive, often leading to poor patient prognosis. Existing serum biomarkers like CA19-9 are limited in early diagnosis, failing to meet clinical needs. Mac...

Evaluating the performance of random forest, support vector machine, gradient tree boost, and CART for improved crop-type monitoring using greenest pixel composite in Google Earth Engine.

Environmental monitoring and assessment
The development of machine learning algorithms, along with high-resolution satellite datasets, aids in improved agriculture monitoring and mapping. Nevertheless, the use of high-resolution optical satellite datasets is usually constrained by clouds a...

Development and validation comparison of multiple models for perioperative neurocognitive disorders during hip arthroplasty.

Scientific reports
This study aims to develop optimal predictive models for perioperative neurocognitive disorders (PND) in hip arthroplasty patients, thereby advancing clinical practice. Data from all hip arthroplasty patients in the MIMIC-IV database were utilized to...

Detection of freely moving thoughts using SVM and EEG signals.

Journal of neural engineering
Freely moving thought is a type of thinking that shifts from one topic to another without any overarching direction or aim. The ability to detect when freely moving thought occurs may help us promote its beneficial outcomes, such as for creative thin...

Developing predictive models for µ opioid receptor binding using machine learning and deep learning techniques.

Experimental biology and medicine (Maywood, N.J.)
Opioids exert their analgesic effect by binding to the µ opioid receptor (MOR), which initiates a downstream signaling pathway, eventually inhibiting pain transmission in the spinal cord. However, current opioids are addictive, often leading to overd...