AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Support Vector Machine

Showing 291 to 300 of 4557 articles

Clear Filters

An automated approach to identify sarcasm in low-resource language.

PloS one
Sarcasm detection has emerged due to its applicability in natural language processing (NLP) but lacks substantial exploration in low-resource languages like Urdu, Arabic, Pashto, and Roman-Urdu. While fewer studies identifying sarcasm have focused on...

Exploiting the features of deep residual network with SVM classifier for human posture recognition.

PloS one
Over the last decade, there have been a lot of advances in the area of human posture recognition. Among multiple approaches proposed to solve this problem, those based on deep learning have shown promising results. Taking another step in this directi...

Classification of glucose-level in deionized water using machine learning models and data pre-processing technique.

PloS one
Accurate monitoring of glucose levels is essential in the field of diabetes detection and prevention to ensure appropriate treatment planning. Conventional blood glucose monitoring methods, although widely used, are intrusive and frequently result in...

Metabolomics-Based Machine Learning Models Accurately Predict Breast Cancer Estrogen Receptor Status.

International journal of molecular sciences
Breast cancer is a global concern as a leading cause of death for women. Early and precise diagnosis can be vital in handling the disease efficiently. Breast cancer subtyping based on estrogen receptor (ER) status is crucial for determining prognosis...

Use of machine learning for simplification of University Personality Inventory (UPI).

Acta psychologica
BACKGROUND: Rapid diagnosis of mental health problems is crucial for college students. The University Personality Inventory (UPI) is a commonly used tools for assessing mental health in college students; however, it has certain limitations. This stud...

Predictive efficacy of machine-learning algorithms on intrahepatic cholestasis of pregnancy based on clinical and laboratory indicators.

The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians
OBJECTIVES: Intrahepatic cholestasis of pregnancy (ICP), a condition exclusive to pregnancy, necessitates prompt identification and intervention to improve the perinatal outcomes. This study aims to develop suitable machine-learning models for predic...

Using three-dimensional fluorescence spectroscopy and machine learning for rapid detection of adulteration in camellia oil.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Camellia oil had been widely utilized in the realms of cooking, healthcare, and beauty. Nevertheless, merchants frequently adulterated pure camellia oil with low-priced oils to cut costs. This study was aimed at identifying the authenticity of camell...

Smart agriculture: utilizing machine learning and deep learning for drought stress identification in crops.

Scientific reports
Plant stress reduction research has advanced significantly with the use of Artificial Intelligence (AI) techniques, such as machine learning and deep learning. This is a significant step toward sustainable agriculture. Innovative insights into the ph...

Machine learning based workflow for (micro)plastic spectral reconstruction and classification.

Chemosphere
With the advancement of artificial intelligence, it is foreseeable that computer-assisted identification of microplastics (MPs) will become increasingly widespread. Therefore, exploring a machine learning-based workflow to facilitate the identificati...

Cytokine profiles as predictors of HIV incidence using machine learning survival models and statistical interpretable techniques.

Scientific reports
HIV remains a critical global health issue, with an estimated 39.9 million people living with the virus worldwide by the end of 2023 (according to WHO). Although the epidemic's impact varies significantly across regions, Africa remains the most affec...