AIMC Topic: Support Vector Machine

Clear Filters Showing 291 to 300 of 4812 articles

A multimodal machine learning algorithm improved diagnostic accuracy for otitis media in a school aged Aboriginal population.

Journal of biomedical informatics
OBJECTIVE: Otitis Media (OM) - ear infection - can lead to hearing loss and associated developmental delay. There are several subgroups of OM which can be difficult to diagnose accurately, even for experienced clinicians. AI and machine learning algo...

Using Machine Learning and Optical Microscopy Image Analysis of Immunosensors Made on Plasmonic Substrates: Application to Detect the SARS-CoV-2 Virus.

ACS sensors
In this article, we introduce a diagnostic platform comprising an optical microscopy image analysis system coupled with machine learning. Its efficacy is demonstrated in detecting SARS-CoV-2 virus particles at concentrations as low as 1 PFU (plaque-f...

Bridging Neuroscience and Machine Learning: A Gender-Based Electroencephalogram Framework for Guilt Emotion Identification.

Sensors (Basel, Switzerland)
This study explores the link between the emotion "guilt" and human EEG data, and investigates the influence of gender differences on the expression of guilt and neutral emotions in response to visual stimuli. Additionally, the stimuli used in the stu...

Interpretable machine learning approaches for children's ADHD detection using clinical assessment data: an online web application deployment.

BMC psychiatry
BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a prevalent mental disorder characterized by hyperactivity, impulsivity, and inattention. This study aims to develop a verifiable and interpretable machine learning model to identify ADHD...

Diagnosis of Benign and Malignant Newly Developed Nodules on the Surgical Side After Breast Cancer Surgery Based on Machine Learning.

The breast journal
To enhance the diagnostic accuracy of new nodules on the surgical side after breast cancer surgery using machine learning techniques and to explore the role of multifeature fusion. Data from 137 breast cancer postoperative patients with new nodules...

Predicting preterm birth using machine learning methods.

Scientific reports
Preterm birth is a significant public health concern, given its correlation with neonatal mortality and morbidity. The aetiology of preterm birth is complex and multifactorial. The objective of this study was to develop and compare machine learning m...

Dental Composite Performance Prediction Using Artificial Intelligence.

Journal of dental research
There is a need to increase the performance and longevity of dental composites and accelerate the translation of novel composites to the market. This study explores the use of artificial intelligence (AI), specifically machine learning (ML) models, t...

Predicting antipsychotic responsiveness using a machine learning classifier trained on plasma levels of inflammatory markers in schizophrenia.

Translational psychiatry
We apply machine learning techniques to navigate the multifaceted landscape of schizophrenia. Our method entails the development of predictive models, emphasizing peripheral inflammatory biomarkers, which are classified into treatment response subgro...

PhageDPO: A machine-learning based computational framework for identifying phage depolymerases.

Computers in biology and medicine
Bacteriophages (phages) are the most predominant and genetically diverse biological entities on Earth. Phages are viruses that infect bacteria and encode numerous proteins with potential biotechnological application. However, most phage-encoded prote...

Detection of brain tumors using a transfer learning-based optimized ResNet152 model in MR images.

Computers in biology and medicine
Brain tumors are incredibly harmful and can drastically reduce life expectancy. Most researchers use magnetic resonance (MR) scans to detect tumors because they can provide detailed images of the affected area. Recently, AI-based deep learning method...