AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Thyroid Gland

Showing 31 to 40 of 122 articles

Clear Filters

Corrigendum to: Super-resolution based Nodule Localization in Thyroid Ultrasound Images through Deep Learning.

Current medical imaging
The funding details have been incorporated upon author's request in the funding section of this articles entitled "Superresolution based Nodule Localization in Thyroid Ultrasound Images through Deep Learning," 2024, 20, e15734056269264 [1]. The origi...

Exploring the diagnostic performance of machine learning in prediction of metabolic phenotypes focusing on thyroid function.

PloS one
In this study, we employed various machine learning models to predict metabolic phenotypes, focusing on thyroid function, using a dataset from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2012. Our analysis utilized labo...

Machine learning to predict the occurrence of thyroid nodules: towards a quantitative approach for judicious utilization of thyroid ultrasonography.

Frontiers in endocrinology
INTRODUCTION: Ultrasound is instrumental in the early detection of thyroid nodules, which is crucial for appropriate management and favorable outcomes. However, there is a lack of clinical guidelines for the judicious use of thyroid ultrasonography i...

Raman spectroscopy with an improved support vector machine for discrimination of thyroid and parathyroid tissues.

Journal of biophotonics
The objective of this study was to discriminate thyroid and parathyroid tissues using Raman spectroscopy combined with an improved support vector machine (SVM) algorithm. In thyroid surgery, there is a risk of inadvertently removing the parathyroid g...

Improved Diagnostic Accuracy of Thyroid Fine-Needle Aspiration Cytology with Artificial Intelligence Technology.

Thyroid : official journal of the American Thyroid Association
Artificial intelligence (AI) is increasingly being applied in pathology and cytology, showing promising results. We collected a large dataset of whole slide images (WSIs) of thyroid fine-needle aspiration cytology (FNA), incorporating z-stacking, fr...

Deep learning models for thyroid nodules diagnosis of fine-needle aspiration biopsy: a retrospective, prospective, multicentre study in China.

The Lancet. Digital health
BACKGROUND: Accurately distinguishing between malignant and benign thyroid nodules through fine-needle aspiration cytopathology is crucial for appropriate therapeutic intervention. However, cytopathologic diagnosis is time consuming and hindered by t...

Deep learning-based cell segmentation for rapid optical cytopathology of thyroid cancer.

Scientific reports
Fluorescence polarization (Fpol) imaging of methylene blue (MB) is a promising quantitative approach to thyroid cancer detection. Clinical translation of MB Fpol technology requires reduction of the data analysis time that can be achieved via deep le...

The clinical value of artificial intelligence in assisting junior radiologists in thyroid ultrasound: a multicenter prospective study from real clinical practice.

BMC medicine
BACKGROUND: This study is to propose a clinically applicable 2-echelon (2e) diagnostic criteria for the analysis of thyroid nodules such that low-risk nodules are screened off while only suspicious or indeterminate ones are further examined by histop...

Pathology diagnosis of intraoperative frozen thyroid lesions assisted by deep learning.

BMC cancer
BACKGROUND: Thyroid cancer is a common thyroid malignancy. The majority of thyroid lesion needs intraoperative frozen pathology diagnosis, which provides important information for precision operation. As digital whole slide images (WSIs) develop, dee...

Artificial neural network prediction of postoperative complications in papillary thyroid microcarcinoma based on preoperative ultrasonographic features.

Journal of clinical ultrasound : JCU
OBJECTIVE: To predict post-thyroidectomy complications in papillary thyroid microcarcinoma (PTMC) patients using a deep learning model based on preoperative ultrasonographic features. This study addresses the global rise in PTMC incidence and the cha...