AIMC Topic: Tomography, X-Ray Computed

Clear Filters Showing 441 to 450 of 4795 articles

Advancing brain tumor detection and classification in Low-Dose CT images using the innovative multi-layered deep neural network model.

Technology and health care : official journal of the European Society for Engineering and Medicine
BackgroundEffective brain tumour therapy and better patient outcomes depend on early tumour diagnosis. Accurate diagnosis can be hampered by traditional imaging techniques' frequent struggles with low resolution and noise, especially in Low Dose CT s...

Feasibility of AI as first reader in the 4-IN-THE-LUNG-RUN lung cancer screening trial: impact on negative-misclassifications and clinical referral rate.

European journal of cancer (Oxford, England : 1990)
BACKGROUND: Lung cancer screening (LCS) with low-dose CT (LDCT) reduces lung-cancer-related mortality in high-risk individuals. AI can potentially reduce radiologist workload as first-read-filter by ruling-out negative cases. The feasibility of AI as...

CDUNeXt: efficient ossification segmentation with large kernel and dual cross gate attention.

Scientific reports
Ossification of the ligamentum flavum (OLF) is the main causative factor of spinal stenosis, but how to accurately and efficiently identify the ossification region is a clinical pain point and an urgent problem to be solved. Currently, we can only re...

Multimodal Deep Learning Fusing Clinical and Radiomics Scores for Prediction of Early-Stage Lung Adenocarcinoma Lymph Node Metastasis.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a multimodal deep learning (DL) model based on computed tomography (CT) images and clinical knowledge to predict lymph node metastasis (LNM) in early lung adenocarcinoma.

Development and external validation of a multi-task feature fusion network for CTV segmentation in cervical cancer radiotherapy.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Accurate segmentation of the clinical target volume (CTV) is essential to deliver an effective radiation dose to tumor tissues in cervical cancer radiotherapy. Also, although automated CTV segmentation can reduce oncologists' ...

Descriptive overview of AI applications in x-ray imaging and radiotherapy.

Journal of radiological protection : official journal of the Society for Radiological Protection
Artificial intelligence (AI) is transforming medical radiation applications by handling complex data, learning patterns, and making accurate predictions, leading to improved patient outcomes. This article examines the use of AI in optimising radiatio...

Deep Learning Model for the Differential Diagnosis of Nasal Polyps and Inverted Papilloma by CT Images: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: Nasal polyps (NP) and inverted papilloma (IP) are benign tumors within the nasal cavity, each necessitating distinct treatment approaches. Herein, we investigate the utility of a deep learning (DL) model for distinguishing b...

Machine learning-based pipeline for automated intracerebral hemorrhage and drain detection, quantification, and classification in non-enhanced CT images (NeuroDrAIn).

PloS one
BACKGROUND AND PURPOSE: External drainage represents a well-established treatment option for acute intracerebral hemorrhage. The current standard of practice includes post-operative computer tomography imaging, which is subjectively evaluated. The im...

Correlation between individual thigh muscle volume and grip strength in relation to sarcopenia with automated muscle segmentation.

PloS one
INTRODUCTION: Grip strength serves as a significant marker for diagnosing and assessing sarcopenia, particularly in elderly populations. The study aims to explore the relationship between individual thigh muscle volumes and grip strength, leveraging ...