AIMC Topic: Tuberculosis

Clear Filters Showing 11 to 20 of 152 articles

Understanding Providers' Attitude Toward AI in India's Informal Health Care Sector: Survey Study.

JMIR formative research
BACKGROUND: Tuberculosis (TB) is a major global health concern, causing 1.5 million deaths in 2020. Diagnostic tests for TB are often inaccurate, expensive, and inaccessible, making chest x-rays augmented with artificial intelligence (AI) a promising...

ResGloTBNet: An interpretable deep residual network with global long-range dependency for tuberculosis screening of sputum smear microscopy images.

Medical engineering & physics
Tuberculosis is a high-mortality infectious disease. Manual sputum smear microscopy is a common and effective method for screening tuberculosis. However, it is time-consuming, labor-intensive, and has low sensitivity. In this study, we propose ResGlo...

Artificial intelligence: a useful tool in active tuberculosis screening among vulnerable groups in Romania - advantages and limitations.

Frontiers in public health
INTRODUCTION: Despite advances in diagnostic technologies for tuberculosis (TB), global control of this disease requires improved technologies for active case finding in selected vulnerable populations. The integration of artificial intelligence (AI)...

Deep learning-driven bacterial cytological profiling to determine antimicrobial mechanisms in .

Proceedings of the National Academy of Sciences of the United States of America
Tuberculosis (TB), caused by , remains a significant global health threat, affecting an estimated 10.6 million people in 2022. The emergence of multidrug resistant and extensively drug resistant strains necessitates the development of novel and effec...

Machine learning model to predict the adherence of tuberculosis patients experiencing increased levels of liver enzymes in Indonesia.

PloS one
Indonesia is still the second-highest tuberculosis burden country in the world. The antituberculosis adverse drug reaction and adherence may influence the success of treatment. The objective of this study is to define the model for predicting the adh...

Risk Prediction of Liver Injury in Pediatric Tuberculosis Treatment: Development of an Automated Machine Learning Model.

Drug design, development and therapy
PURPOSE: Drug-induced liver injury (DILI) is one of the most common and serious adverse drug reactions related to first-line anti-tuberculosis drugs in pediatric tuberculosis patients. This study aims to develop an automatic machine learning (AutoML)...

Enhanced swin transformer based tuberculosis classification with segmentation using chest X-ray.

Journal of X-ray science and technology
BACKGROUND:: Tuberculosis disease is the disease that causes significant morbidity and mortality worldwide. Thus, early detection of the disease is crucial for proper treatment and controlling the spread of Tuberculosis disease. Chest X-ray imaging i...

Predicting the risk of pulmonary embolism in patients with tuberculosis using machine learning algorithms.

European journal of medical research
BACKGROUND: This study aimed to develop predictive models with robust generalization capabilities for assessing the risk of pulmonary embolism in patients with tuberculosis using machine learning algorithms.

Diagnostic Accuracy of Artificial Intelligence-Based Chest X-Ray reading for screening of Tuberculosis.

Journal of Nepal Health Research Council
BACKGROUND: Tuberculosis remains a public health challenge in Nepal and ranks as the seventh leading cause of death in the country. The END Tuberculosis strategy stresses - the screening for symptoms alone may not suffice; additional screening tools ...

Hyb_SEnc: An Antituberculosis Peptide Predictor Based on a Hybrid Feature Vector and Stacked Ensemble Learning.

IEEE/ACM transactions on computational biology and bioinformatics
Tuberculosis has plagued mankind since ancient times, and the struggle between humans and tuberculosis continues. Mycobacterium tuberculosis is the leading cause of tuberculosis, infecting nearly one-third of the world's population. The rise of pepti...