AIMC Topic: Tuberculosis

Clear Filters Showing 11 to 20 of 161 articles

Early differential diagnosis models of Talaromycosis and Tuberculosis in HIV-negative hosts using clinical data and machine learning.

Journal of infection and public health
BACKGROUND: Talaromyces marneffei is an emerging pathogen, and the number of infections in HIV-negative individuals is increasing. In HIV-negative individuals, talaromycosis is usually misdiagnosed as another disease, especially tuberculosis (TB).

Diagnostic Performance of Artificial Intelligence-Based Methods for Tuberculosis Detection: Systematic Review.

Journal of medical Internet research
BACKGROUND: Tuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnos...

Prediction of tuberculosis treatment outcomes using biochemical makers with machine learning.

BMC infectious diseases
BACKGROUND: Tuberculosis (TB) continues to pose a significant threat to global public health. Enhancing patient prognosis is essential for alleviating the disease burden.

Understanding Providers' Attitude Toward AI in India's Informal Health Care Sector: Survey Study.

JMIR formative research
BACKGROUND: Tuberculosis (TB) is a major global health concern, causing 1.5 million deaths in 2020. Diagnostic tests for TB are often inaccurate, expensive, and inaccessible, making chest x-rays augmented with artificial intelligence (AI) a promising...

ResGloTBNet: An interpretable deep residual network with global long-range dependency for tuberculosis screening of sputum smear microscopy images.

Medical engineering & physics
Tuberculosis is a high-mortality infectious disease. Manual sputum smear microscopy is a common and effective method for screening tuberculosis. However, it is time-consuming, labor-intensive, and has low sensitivity. In this study, we propose ResGlo...

Artificial intelligence: a useful tool in active tuberculosis screening among vulnerable groups in Romania - advantages and limitations.

Frontiers in public health
INTRODUCTION: Despite advances in diagnostic technologies for tuberculosis (TB), global control of this disease requires improved technologies for active case finding in selected vulnerable populations. The integration of artificial intelligence (AI)...

Deep learning-driven bacterial cytological profiling to determine antimicrobial mechanisms in .

Proceedings of the National Academy of Sciences of the United States of America
Tuberculosis (TB), caused by , remains a significant global health threat, affecting an estimated 10.6 million people in 2022. The emergence of multidrug resistant and extensively drug resistant strains necessitates the development of novel and effec...

Machine learning model to predict the adherence of tuberculosis patients experiencing increased levels of liver enzymes in Indonesia.

PloS one
Indonesia is still the second-highest tuberculosis burden country in the world. The antituberculosis adverse drug reaction and adherence may influence the success of treatment. The objective of this study is to define the model for predicting the adh...