AIMC Topic: United States

Clear Filters Showing 91 to 100 of 1288 articles

Operational safety risk modeling in a naval organization.

Journal of safety research
INTRODUCTION: Following numerous mishaps and near-misses, the U.S. Naval Surface Force established the Operational Surface Risk Indicators (OSRI) project to explore a robust proactive risk analysis and reduction capability. The OSRI model leverages m...

Identifying individuals at risk for weight gain using machine learning in electronic medical records from the United States.

Diabetes, obesity & metabolism
AIMS: Numerous risk factors for the development of obesity have been identified, yet the aetiology is not well understood. Traditional statistical methods for analysing observational data are limited by the volume and characteristics of large dataset...

PrOsteoporosis: predicting osteoporosis risk using NHANES data and machine learning approach.

BMC research notes
OBJECTIVES: Osteoporosis, prevalent among the elderly population, is primarily diagnosed through bone mineral density (BMD) testing, which has limitations in early detection. This study aims to develop and validate a machine learning approach for ost...

The Road Map for ACR Practice Accreditation for Radiology Artificial Intelligence.

Journal of the American College of Radiology : JACR
As the use of artificial intelligence (AI) continues to grow in radiology, it has become clear that its real-world performance often differs from that demonstrated in premarket testing, underscoring the need for robust quality management (QM) program...

Forecasting trends of rising emergency department chest imaging using machine learning.

Emergency radiology
INTRODUCTION: Imaging studies in the acute care setting, such as the emergency room, have been increasing. In this report, we use the Centers for Medicare and Medicaid services (CMS) database to assess trends in ED chest CT and chest CTA imaging in E...

A Future of Self-Directed Patient Internet Research: Large Language Model-Based Tools Versus Standard Search Engines.

Annals of biomedical engineering
PURPOSE: As generalist large language models (LLMs) become more commonplace, patients will inevitably increasingly turn to these tools instead of traditional search engines. Here, we evaluate publicly available LLM-based chatbots as tools for patient...

An interpretable machine learning model with demographic variables and dietary patterns for ASCVD identification: from U.S. NHANES 1999-2018.

BMC medical informatics and decision making
Current research on the association between demographic variables and dietary patterns with atherosclerotic cardiovascular disease (ASCVD) is limited in breadth and depth. This study aimed to construct a machine learning (ML) algorithm that can accur...

Artificial Intelligence to Enhance Precision Medicine in Cardio-Oncology: A Scientific Statement From the American Heart Association.

Circulation. Genomic and precision medicine
Artificial intelligence is poised to transform cardio-oncology by enabling personalized care for patients with cancer, who are at a heightened risk of cardiovascular disease due to both the disease and its treatments. The rising prevalence of cancer ...