OBJECTIVES: To evaluate the effectiveness of super-resolution deep learning reconstruction (SR-DLR) in low-dose abdominal computed tomography (CT) imaging compared with hybrid iterative reconstruction (HIR) and conventional deep learning reconstructi...
PURPOSE: Bone metastasis is a critical complication in prostate cancer, significantly impacting patient prognosis and quality of life. This study aims to enhance bone metastasis prediction using machine learning (ML) techniques by integrating dynamic...
PURPOSE: To evaluate the feasibility of a high-precision single-shot fast spin-echo (SS-FSE) sequence using the deep learning-based Precise IQ Engine (PIQE) algorithm in comparison with standard SS-FSE for T2-weighted MR imaging of the abdomen, and t...
PURPOSE: To apply CT-based deep learning (DL) models for accurate solid debris-based classification of pancreatic fluid collections (PFC) in acute pancreatitis (AP).
BACKGROUND: Some clinicopathological risk stratification systems (CRSSs) such as the leibovich score have been used to predict the postoperative prognosis of patients with clear cell renal cell carcinoma (ccRCC), but there are no reliable noninvasive...
PURPOSE: The ability to reliably distinguish benign from malignant solid liver lesions on ultrasonography can increase access, decrease costs, and help to better triage patients for biopsy. In this study, we used deep learning to differentiate benign...
Prostate MRI has seen increasing interest in recent years and has led to the development of new MRI techniques and sequences to improve prostate cancer (PCa) diagnosis which are reviewed in this article. Numerous studies have focused on improving ima...
Artificial intelligence is a technique that holds promise for helping radiologists improve the care of our patients. At the same time, implementation decisions we make now can have a long-lasting effect on patient outcomes. In the following article, ...
PURPOSE: Deep learning reconstruction (DLR) introduces deep convolutional neural networks into the reconstruction flow. We examined the clinical applicability of drip-infusion cholangiography (DIC) acquired on an ultra-high-resolution CT (U-HRCT) sca...
PURPOSE: To evaluate whether a three-phase dynamic contrast-enhanced CT protocol, when combined with a deep learning model, has similar accuracy in differentiating hepatocellular carcinoma (HCC) from other focal liver lesions (FLLs) compared with a f...