Signaling pathway components are well studied, but how they mediate cell-type-specific transcription responses is an unresolved problem. Using the Hippo pathway in mouse trophoblast stem cells as a model, we show that the DNA binding of signaling eff...
Deep learning models have advanced our ability to predict cell-type-specific chromatin patterns from transcription factor (TF) binding motifs, but their application to perturbed contexts remains limited. We applied transfer learning to predict how co...
DNA methylation (DNAm) is a key epigenetic mark with essential roles in gene regulation, mammalian development, and human diseases. Single-cell technologies enable profiling DNAm at cytosines in individual cells, but they often suffer from low covera...
Sequence-based deep learning models have emerged as powerful tools for deciphering the cis-regulatory grammar of the human genome but cannot generalize to unobserved cellular contexts. Here, we present EpiBERT, a multi-modal transformer that learns g...
N-methyladenosine (m6A) is the most prevalent chemical modification in eukaryotic mRNAs and plays key roles in diverse cellular processes. Precise localization of m6A sites is thus critical for characterizing the functional roles of m6A in various co...
Cell atlases serve as vital references for automating cell labeling in new samples, yet existing classification algorithms struggle with accuracy. Here we introduce SIMS (scalable, interpretable machine learning for single cell), a low-code data-effi...
Here, we examine the challenges posed by laws in the United States and China for generative-AI-assisted genomic research collaboration. We recommend renewing the Agreement on Cooperation in Science and Technology to promote responsible principles for...
Transcriptome-wide association studies (TWASs) help identify disease-causing genes but often fail to pinpoint disease mechanisms at the cellular level because of the limited sample sizes and sparsity of cell-type-specific expression data. Here, we pr...
Exploratory analysis of single-cell RNA sequencing (scRNA-seq) typically relies on hard clustering over two-dimensional projections like uniform manifold approximation and projection (UMAP). However, such methods can severely distort the data and hav...
N-methyladenosine (m6A), the most prevalent internal mRNA modification in higher eukaryotes, plays diverse roles in cellular regulation. By incorporating both sequence- and genome-derived features, Fan et al. designed a novel Transformer-BiGRU framew...