AI Medical Compendium Journal:
Cell genomics

Showing 1 to 10 of 10 articles

Transfer learning reveals sequence determinants of the quantitative response to transcription factor dosage.

Cell genomics
Deep learning models have advanced our ability to predict cell-type-specific chromatin patterns from transcription factor (TF) binding motifs, but their application to perturbed contexts remains limited. We applied transfer learning to predict how co...

Deep learning imputes DNA methylation states in single cells and enhances the detection of epigenetic alterations in schizophrenia.

Cell genomics
DNA methylation (DNAm) is a key epigenetic mark with essential roles in gene regulation, mammalian development, and human diseases. Single-cell technologies enable profiling DNAm at cytosines in individual cells, but they often suffer from low covera...

A multi-modal transformer for cell type-agnostic regulatory predictions.

Cell genomics
Sequence-based deep learning models have emerged as powerful tools for deciphering the cis-regulatory grammar of the human genome but cannot generalize to unobserved cellular contexts. Here, we present EpiBERT, a multi-modal transformer that learns g...

A combined deep learning framework for mammalian m6A site prediction.

Cell genomics
N-methyladenosine (m6A) is the most prevalent chemical modification in eukaryotic mRNAs and plays key roles in diverse cellular processes. Precise localization of m6A sites is thus critical for characterizing the functional roles of m6A in various co...

SIMS: A deep-learning label transfer tool for single-cell RNA sequencing analysis.

Cell genomics
Cell atlases serve as vital references for automating cell labeling in new samples, yet existing classification algorithms struggle with accuracy. Here we introduce SIMS (scalable, interpretable machine learning for single cell), a low-code data-effi...

Regulatory barriers to US-China collaboration for generative AI development in genomic research.

Cell genomics
Here, we examine the challenges posed by laws in the United States and China for generative-AI-assisted genomic research collaboration. We recommend renewing the Agreement on Cooperation in Science and Technology to promote responsible principles for...

scPrediXcan integrates deep learning methods and single-cell data into a cell-type-specific transcriptome-wide association study framework.

Cell genomics
Transcriptome-wide association studies (TWASs) help identify disease-causing genes but often fail to pinpoint disease mechanisms at the cellular level because of the limited sample sizes and sparsity of cell-type-specific expression data. Here, we pr...

CSI-GEP: A GPU-based unsupervised machine learning approach for recovering gene expression programs in atlas-scale single-cell RNA-seq data.

Cell genomics
Exploratory analysis of single-cell RNA sequencing (scRNA-seq) typically relies on hard clustering over two-dimensional projections like uniform manifold approximation and projection (UMAP). However, such methods can severely distort the data and hav...

AI techniques have facilitated the understanding of epitranscriptome distribution.

Cell genomics
N-methyladenosine (m6A), the most prevalent internal mRNA modification in higher eukaryotes, plays diverse roles in cellular regulation. By incorporating both sequence- and genome-derived features, Fan et al. designed a novel Transformer-BiGRU framew...