AI Medical Compendium Journal:
Genes

Showing 61 to 70 of 97 articles

The Trifecta of Single-Cell, Systems-Biology, and Machine-Learning Approaches.

Genes
Together, single-cell technologies and systems biology have been used to investigate previously unanswerable questions in biomedicine with unparalleled detail. Despite these advances, gaps in analytical capacity remain. Machine learning, which has re...

Toward a Coronavirus Knowledge Graph.

Genes
This study builds a coronavirus knowledge graph (KG) by merging two information sources. The first source is Analytical Graph (AG), which integrates more than 20 different public datasets related to drug discovery. The second source is CORD-19, a col...

A Deep-Learning Sequence-Based Method to Predict Protein Stability Changes Upon Genetic Variations.

Genes
Several studies have linked disruptions of protein stability and its normal functions to disease. Therefore, during the last few decades, many tools have been developed to predict the free energy changes upon protein residue variations. Most of these...

A Literature-Derived Knowledge Graph Augments the Interpretation of Single Cell RNA-seq Datasets.

Genes
Technology to generate single cell RNA-sequencing (scRNA-seq) datasets and tools to annotate them have advanced rapidly in the past several years. Such tools generally rely on existing transcriptomic datasets or curated databases of cell type definin...

On the Unfounded Enthusiasm for Soft Selective Sweeps III: The Supervised Machine Learning Algorithm That Isn't.

Genes
In the last 15 years or so, soft selective sweep mechanisms have been catapulted from a curiosity of little evolutionary importance to a ubiquitous mechanism claimed to explain most adaptive evolution and, in some cases, most evolution. This transfor...

DNN-m6A: A Cross-Species Method for Identifying RNA N6-Methyladenosine Sites Based on Deep Neural Network with Multi-Information Fusion.

Genes
As a prevalent existing post-transcriptional modification of RNA, N6-methyladenosine (m6A) plays a crucial role in various biological processes. To better radically reveal its regulatory mechanism and provide new insights for drug design, the accurat...

4mCPred-CNN-Prediction of DNA N4-Methylcytosine in the Mouse Genome Using a Convolutional Neural Network.

Genes
Among DNA modifications, N4-methylcytosine (4mC) is one of the most significant ones, and it is linked to the development of cell proliferation and gene expression. To know different its biological functions, the accurate detection of 4mC sites is re...

Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs.

Genes
Antimicrobial peptides (AMPs) are natural peptides possessing antimicrobial activities. These peptides are important components of the innate immune system. They are found in various organisms. AMP screening and identification by experimental techniq...

pcPromoter-CNN: A CNN-Based Prediction and Classification of Promoters.

Genes
A promoter is a small region within the DNA structure that has an important role in initiating transcription of a specific gene in the genome. Different types of promoters are recognized by their different functions. Due to the importance of promoter...

RAM-PGK: Prediction of Lysine Phosphoglycerylation Based on Residue Adjacency Matrix.

Genes
BACKGROUND: Post-translational modification (PTM) is a biological process that is associated with the modification of proteome, which results in the alteration of normal cell biology and pathogenesis. There have been numerous PTM reports in recent ye...