Immunohistochemistry (IHC) of ER, PR, and Ki-67 are routinely used assays in breast cancer diagnostics. Determination of the proportion of stained cells (labeling index) should be restricted on malignant epithelial cells, carefully avoiding tumor inf...
Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods that rely on synthesized metal artifacts for training. However, as synthesized data may not accurately simulate the underly...
We aim at segmenting a wide variety of organs, including tiny targets (e.g., adrenal gland), and neoplasms (e.g., pancreatic cyst), from abdominal CT scans. This is a challenging task in two aspects. First, some organs (e.g., the pancreas), are highl...
The Hausdorff Distance (HD) is widely used in evaluating medical image segmentation methods. However, the existing segmentation methods do not attempt to reduce HD directly. In this paper, we present novel loss functions for training convolutional ne...
While convolutional neural network (CNN) has been demonstrating powerful ability to learn hierarchical spatial features from medical images, it is still difficult to apply it directly to resting-state functional MRI (rs-fMRI) and the derived brain fu...
Cataract is the clouding of lens, which affects vision and it is the leading cause of blindness in the world's population. Accurate and convenient cataract detection and cataract severity evaluation will improve the situation. Automatic cataract dete...
Accurate and reliable segmentation of the prostate gland using magnetic resonance (MR) imaging has critical importance for the diagnosis and treatment of prostate diseases, especially prostate cancer. Although many automated segmentation approaches, ...
Digital reconstruction or tracing of 3D neuron is essential for understanding the brain functions. While existing automatic tracing algorithms work well for the clean neuronal image with a single neuron, they are not robust to trace the neuron surrou...
Automated identification and localization of vertebrae in spinal computed tomography (CT) imaging is a complicated hybrid task. This task requires detecting and indexing a long sequence in a 3-D image, and both image feature extraction and sequence m...
Glaucoma is one of the leading causes of irreversible vision loss. Many approaches have recently been proposed for automatic glaucoma detection based on fundus images. However, none of the existing approaches can efficiently remove high redundancy in...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.