AIMC Journal:
Medical physics

Showing 351 to 360 of 732 articles

Deep learning-based motion tracking using ultrasound images.

Medical physics
PURPOSE: Ultrasound (US) imaging is an established imaging modality capable of offering video-rate volumetric images without ionizing radiation. It has the potential for intra-fraction motion tracking in radiation therapy. In this study, a deep learn...

Deep learning predicts epidermal growth factor receptor mutation subtypes in lung adenocarcinoma.

Medical physics
PURPOSE: This study aimed to explore the predictive ability of deep learning (DL) for the common epidermal growth factor receptor (EGFR) mutation subtypes in patients with lung adenocarcinoma.

Cascaded deep learning-based auto-segmentation for head and neck cancer patients: Organs at risk on T2-weighted magnetic resonance imaging.

Medical physics
PURPOSE: To investigate multiple deep learning methods for automated segmentation (auto-segmentation) of the parotid glands, submandibular glands, and level II and level III lymph nodes on magnetic resonance imaging (MRI). Outlining radiosensitive or...

A nested parallel multiscale convolution for cerebrovascular segmentation.

Medical physics
PURPOSE: Cerebrovascular segmentation in magnetic resonance imaging (MRI) plays an important role in the diagnosis and treatment of cerebrovascular diseases. Many segmentation frameworks based on convolutional neural networks (CNNs) or U-Net-like str...

A deep learning- and CT image-based prognostic model for the prediction of survival in non-small cell lung cancer.

Medical physics
OBJECTIVE: To assist clinicians in arranging personalized treatment, planning follow-up programs and extending survival times for non-small cell lung cancer (NSCLC) patients, a method of deep learning combined with computed tomography (CT) imaging fo...

Real-time 3D motion estimation from undersampled MRI using multi-resolution neural networks.

Medical physics
PURPOSE: To enable real-time adaptive magnetic resonance imaging-guided radiotherapy (MRIgRT) by obtaining time-resolved three-dimensional (3D) deformation vector fields (DVFs) with high spatiotemporal resolution and low latency (  ms). Theory and M...

A deep-learning-based prediction model for the biodistribution of Y microspheres in liver radioembolization.

Medical physics
BACKGROUND: Radioembolization with Y microspheres is a treatment approach for liver cancer. Currently, employed dosimetric calculations exhibit low accuracy, lacking consideration of individual patient, and tissue characteristics.

Deep learning-augmented radioluminescence imaging for radiotherapy dose verification.

Medical physics
PURPOSE: We developed a novel dose verification method using a camera-based radioluminescence imaging system (CRIS) combined with a deep learning-based signal processing technique.

Robustness of deep learning segmentation of cardiac substructures in noncontrast computed tomography for breast cancer radiotherapy.

Medical physics
PURPOSE: To develop and evaluate deep learning-based autosegmentation of cardiac substructures from noncontrast planning computed tomography (CT) images in patients undergoing breast cancer radiotherapy and to investigate the algorithm sensitivity to...

Deep learning-enabled EPID-based 3D dosimetry for dose verification of step-and-shoot radiotherapy.

Medical physics
PURPOSE: The study aims at a novel dosimetry methodology to reconstruct a 3D dose distribution as imparted to a virtual cylindrical phantom using an electronic portal imaging device (EPID).